Pages

Wednesday, March 18, 2020

Cat 6A cabling Benefits cautions and use-cases

Cat 6A cabling Benefits, cautions and use-cases

Simply put, the ANSI/TIA-568-C.1 specification cable standard – otherwise known as CAT6A – is the solution to the distance shortcomings of CAT6 when working with 10GBASE-T Ethernet.
Video Surveillance Network and cabling professionals are likely to come across different Ethernet cabling standards over the course of their career. These range from legacy installs of CAT3 and CAT5e — to the modern ultra-high-performance data center CAT8 standard. Yet, for most access-layer installs, CAT6 and CAT6A are the two most common standards to choose from. This cabling will be responsible for connecting end devices such as PC’s, laptops, WiFi access points and a plethora of Internet of Things (IoT) devices.
When considering Ethernet cabling install options for access-layer deployments, there are several things to look at. One of the more important decisions is whether endpoints will require the higher speed and PoE performance of CAT6A – while being willing accept a few inconveniences that come with the deployment. In this article, we’ll walk through the benefits and drawbacks of CAT6A compared to CAT6. Additionally, we’ll point out real-world circumstances that justify the added cost and installation hurdles that come with running and certifying the higher-performance cabling.

CAT6A Benefits
One key benefit of CAT6A over CAT6 is speed. A CAT6 cable can run 10/100/1000BASE-T Ethernet at speeds up to 1000 Mbps and a maximum length of 100 meters. The same is also true for 2.5GBASE-T and 5GBASE-T running at 2.5 and 5 Gbps, respectively. However, when moving up to the newer 10GBASE-T standard that operates at speeds of 10 Gbps, CAT6 cabling is only supported up to a maximum distance of 37 to 55 meters, depending on the levels of alien crosstalk in the installation environment.
Considering that most building access-layer networking closets are built around a 100-meter maximum distance, 37- and 55-meter runs would end up leaving many cables pulls short.

The ANSI/TIA-568-C.1 specification cable standard – otherwise known as CAT6A – is the solution to the distance shortcomings of CAT6 when working with 10GBASE-T Ethernet. In addition to the speed/distance benefits, CAT6A is defined for frequencies up to 500 MHz and improved noise canceling properties. Both translate into improved Ethernet performance with fewer chances of external interference.

A second benefit of CAT6A that is growing in importance is that it can handle higher levels of power over Ethernet (PoE) output without any performance degradation. Endpoints such as WiFi access points, surveillance cameras, intelligent lighting and monitoring/automation sensors are growing increasingly power hungry. The latest 802.3bt PoE specifications support 60W (Type 3) to 100W (Type 4) of output per cable run. That’s as much as three times the maximum Wattage specified in the 802.3at (PoE+) standard.
Example: Cat 6A PoE Test Results
Even though 802.3bt utilizes all 4 pair of wires as opposed to two, more power output translates into more heat on the wire. When cables get hot, they become susceptible to what’s known as insertion loss. Transmitting added power to end devices also causes an increased chance of DC resistance unbalance. Both problems are more likely to occur when running CAT6 cabling as opposed to CAT6A. CAT6A conductors are thicker – which can help dissipate the heat.


Additionally, DC resistance unbalance is less likely to occur in high-quality CAT6A cabling due to the likelihood that the cabling conductor diameter will not vary as much compared to lower cost CAT6 alternatives. Ultimately, the only way to verify that cabling runs adhere to 802.3bt standards is to perform cable certification tests using a tool such as the AEM TestPro CV100 combined with the AD-NET-CABLE adapter.

Sunday, March 8, 2020

Security Mantraps on the way

Security Mantraps on the way

Security mantraps came into use during the 16th century and were mechanical devices used for catching poachers and trespassers. Today, a security mantrap is commonly described as a small room, area or compartment that is designed to temporarily hold (trap) an individual between two doors (barriers) so that their credentials can be verified before granting access. Verification may be manual, with security personnel doing the verification, or automatic, with technology doing the verification. Most systems installed today are automatic with various integrated technologies to enhance security, safety and prevent unauthorized entry.

In the 17th century, sally ports were built to control the entryway to a fortification or prison. They often included two sets of doors (or gates) to delay enemy penetration. Today, a sally port used for security applications may include doors, gates or other physical barriers to control access of people (or vehicles) to a secure area. Both security mantraps and sally ports are in widely used for security applications, however, despite some similarities, the terms are not used interchangeably, and only sally ports are referenced in the building codes.
A mantrap is an access control tool designed and restricted to a physical space, which is separated from the adjoining spaces (rooms) by two doors, usually an exit and an entry door that cannot be unlocked at the same time. Mantraps are like a double-door checking system that use either airlock technology or interlocking doors.


Today's simplified automatic mantrap rooms enable access with access cards, key fobs and mobile phones. Since mantraps prevent two persons (unless authorized) to be in the same room, they can be used for shared spaces in hospitals, dormitories and boarding rooms or anywhere else where people have some need for privacy.
Both the International Building Code (IBC) and the Life Safety Code (NFPA 101) describe a sally port as a compartmented area with two or more doors (or gates) where the intended purpose is to prevent continuous and unobstructed passage by allowing the release of only one door at a time. Both codes restrict their use to institutional type occupancies (e.g., prisons, jails, detention and correctional centers) and require provisions for continuous and unobstructed travel through the sally port during an emergency egress condition.

During 2017, the most digital damage from cyber-attacks includes continuous targeting of critical infrastructure, ransomware, government emails being hacked, exfiltration of Central Intelligence Agency documents, and the multinational WannaCry ransomware attack of over 200,000 systems. Gartners’ global information security spending forecast estimates that by the end of 2017, purchases for security products and services could reach $84.5 billion or a seven percent increase since 2016. Defenses have progressively improved and measures continue to be implemented. However, there is one area which lags far behind – that is the physical security of data centers and, specifically, the adoption and employment of mantraps.

According to BICSI, a mantrap is created using two interlocking doors which open only one at a time after the correct credentials have been validated. To physically secure a facility or data center, periodic risk assessment and policy reviews should be conducted. Ideally, drills should be included to engrain the training scenarios and validate policies and procedures. An example of layered security can be found in the TIA-942 where tiers I through IV are used to differentiate each level including Kevlar or bullet resistant walls, windows, doors, closed circuit television (CCTV) monitoring, access control and more.
Despite their widespread use, security mantraps are not referenced by either IBC or NFPA, which has given rise to a plethora of terms and definitions, including, for example: security portals, security vestibules, security airlocks, security booths, security cabins, control vestibules and personnel interlocks. For the supplier, designer or code official, this lack of regulation can result in different interpretations of building code and life safety requirements. Generally, the most appropriate sections of the code are applied and enforced, which may include sections on doors, gates, turnstiles, revolving doors and accessibility requirements. Because security mantraps are unique in their design and operation, the enforcement of code sections intended for other technologies may result in installed systems that are over- or under-designed with added costs and project delays, if accepted at all.

A security mantrap may be manual or automatic, manned or unmanned, pre-engineered or built from the ground up, located indoors or outdoors, and include a variety of technologies to enhance security, safety, aesthetics, throughput, service and overall performance. The systems come in various sizes, shapes, styles and configurations with a multitude of finishes, glazing and door options, including ballistic and vandal resistant. Other options and features include: metal/weapons detection, left object detection, tailgating/piggybacking detection, monoblock construction, wall mount versions, network interface capabilities, video cameras, intercoms, anti-pass back integration, biometrics, manual releases, and inputs/outputs for control and alarm monitoring. most common mantraps work with a system of two interlocked doors, there are solutions that can be implemented on three or more doors, including varied authentication systems. “Real” mantraps typically have two locked doors. Some interlocked mantraps, such as those used at bank entrances, are unlocked to begin with, and only lock when one of the doors is open.
Security mantraps are commonly found in high-security, mission-critical facilities (e.g., government, military, critical infrastructure), but can also be found in many commercial and industrial facilities (e.g., banking, data centers, pharmaceutical, health care, airports, casinos, executive suites, high-end retail, R&D labs). Some of the key drivers for using security mantraps include the ability to detect and prevent tailgating and piggybacking incidents in unmanned locations, satisfying various regulatory compliance standards (e.g., GDPR, GLBA, PCI DSS, HIPPA, FISMA, SOX) by restricting access to critical information systems, and protecting against other security threats that have become more prevalent in the world today (e.g., espionage, terrorism, theft, vandalism, protests, etc.).

When security mantraps are being considered as a countermeasure to mitigate unauthorized entry, it is important to establish clear goals and objectives for the equipment, application and environment. Then, carefully review and evaluate the proposed system based on form, fit and function. When these systems become part of the building infrastructure, provisions for security and safety must be met. This often starts with a security risk assessment for the facility or site.

Two Major Types of Mantraps:
  • Air Lock Control – low-security systems used only for environmental control also referred to as normally unlocked.
  • Restricted Entry and Exit – these are considered the highest security type that is used with normally locked doors. Opening any door keeps all other doors secure. The man trap buffers simultaneous requests for access which prevents any two doors from being unlocked.
Additionally, some man traps may incorporate the use of Request-to-exit (REX) device – typically located on the inside secured door, most are identified as a ‘quick release’ latch.

Mantrap Pros:
  • Allows only one person to enter or exit at a given time
  • Requires proper identification and authentication
  • Restricts movement into and out of the data center
  • Can be used to closed unwanted visitors until authorities are called
  • Provides an audit trail for personnel and visitors
Mantrap Cons:
  • Highly secure doors are more expensive
  • May not permit movement of large boxes, dollies, deliveries, etc.
  • May fail during electrical power outage unless backup exists
  • If not properly implemented according to policy and design, may present a safety risk
The goal of any security risk assessment is to develop a protection strategy that mitigates risk to people, property and information systems, and, for security mantraps, the primary goal is to prevent unauthorized entry. The security risk assessment process begins with asset identification and valuation, followed by evaluation and analysis of associated threats, vulnerabilities and potential loss impact. Finally, security measures are recommended and form the basis of an integrated protection strategy.