Pages

Thursday, December 15, 2022

Internet of Things and the Cloud Ecosystem

Internet of Things and the Cloud Ecosystem

Internet of Things or IoT refers to an ecosystem of devices/things that are connected to each other over a network enabling communication among them. These connected devices are equipped with UIDs (Unique Identifiers). Once a device or gadget is represented digitally, it can be controlled or managed from anywhere. This helps to capture and transfer data from different places with minimal human intervention, increasing efficiency and improving decision making.

Broadly, Internet of Things can be classified into Consumer IoT (CIOT)) and Industrial or Enterprise IoT (IIoT). The key difference between CIoT and IIoT mainly lies in the type of devices, application and the technologies that power them.

Consumer IoT

Home Security and Smart Homes is one of the major areas where Consumer IoT is becoming very important.  Monitoring intrusions, authorizing entries, controlling appliances remotely, all these are examples of Consumer IoT applications.  Personal Healthcare is another area, which has benefitted extensively from Consumer Internet of Things. Personal wearable healthcare devices like fitness bands, track and monitor performance over time, providing information on progress and improvement. Blood pressure and heart rate bands powered by IoT can connect us directly to the healthcare system and provide timely assistance and alerts when needed. Other areas in the healthcare industry wherein IoT can play a crucial role include patient surveillance, care of the elderly and the disabled.

Industrial IoT

Enterprise and Industrial IoT applications can automate business processes that depend on contextual information provided by embedded devices such as machines, vehicles and other equipment. In recent years, Internet of Things has been gaining wide applicability, notably in Industrial and Enterprise environment as it provides a convenient mechanism to connect devices, people and processes. Organizations are looking at upgrading their existing resources to bring all their legacy systems under the IoT ecosystem. The key here is to ensure seamless interoperability, connectivity, scalability, and stability among various components in the ecosystem.  Some of the areas where organizations can bring in easy, yet beneficial changes with IoT are,

o   Asset tracking

o   Resource Management

o   Inventory management

o   Job/Task distribution

Cloud Ecosystem

The cloud ecosystem offers a platform to connect, collaborate and innovate. While IoT generates data from various physical systems in the ecosystem, cloud enables a seamless data flow and quick communication among these devices. It’s a complex system of connected devices that work together to create an efficient platform. The resources that can be delivered through cloud ecosystem include computing power, computing infrastructure (servers and storage), applications, business processes and more. Cloud infrastructure has the following characteristics, which differentiate it from similar distributed computing technologies:

o   Scalability

o   Automatic provisioning and de-provisioning of resources

o   Cloud services accessible through APIs

o   Billing and metering in a pay-per-use model

o   Performance monitoring and measuring

o   Security to safeguard critical data

How do IoT and the Cloud go hand in hand?

Internet of Things and cloud computing are complementary in nature. IoT benefits from the scalability, performance and pay-per-use model of cloud infrastructure. The cloud reduces the computational power needed by organizations and makes data processing less energy-intensive. These facilitate business analytics and collaborative capabilities which help organizations in rapid development of new products and services. The benefits of combining IoT and the cloud are:

o   Quicker deployment of data and thus, quicker decision making

o   Easy navigation through data

o   Flexible payment options

o   Decreased costs on hardware and software

o   High degree of scalability

Conclusion

According to SoftBank, by 2025 about 1.0 trillion devices are expected to be connected over Internet of Things. The rapid development in the field of IoT technology and the fast-paced business environment has made IoT an inevitable choice for organizations. IoT is bridging the gap between physical systems and digital world, hence increasing productivity in both consumer and industrial environment.

IoT service providers assist organizations to transform their infrastructure by providing IoT sensor nodes and IoT Gateway Devices, integrating the communication Frameworks and protocols and providing the Applications [Web/Cloud Applications and Client Applications], to bridge the legacy systems to the IoT infrastructure. IoT Service Providers identify congestions in the enterprise functioning and help the organization to achieve increased efficiency by enabling systematic and intelligent tracking, monitoring, communication and decision-making system. Mistral, as a technology service provider can help you realize your IoT strategy by providing IoT Device Designs and IoT Gateway Designs based on powerful processors from Intel, Texas Instruments, Qualcomm, NXP/Freescale and open source platforms. We can help you through IoT Protocol Development, Web/Cloud/PC Applications integrating with the legacy system to provide a seamless IoT enabled solution for enterprise and industrial automation.

Ref:


Thursday, December 1, 2022

Fundamentals of Printed Circuit Board

Fundamentals of Printed Circuit Board 

We live in a world driven by technology and use them in nearly every aspect of our daily lives. We tend to depend on smart electronic devices to make our lives easier, organised and better connected. Needless to say, all these electronic devices are designed over a Printed Circuit Board (PCB). PCB Design Services is a product design process involving high-level engineering tools for board design.

PCB Design is the point in a design stage at which all the design decisions made earlier come together and where unforeseen problems related to performance, power distribution analysis, signal integrity, thermal analysis and noise mismatching make themselves known and have to be resolved.

What is a PCB or printed circuit board?

Printed Circuit Board is a critical component in electronics that enables and integrates all the electronic circuits/components of a design. These boards are used in various electronic products – from Smartphones, Smart Tabs, Reader, Camera Devices, Access Controller, Infotainment Systems to Medical devices, Industrial equipment, Automotive Electronics, Radars, Defense, Military and Aerospace equipment and all other computing systems.

Printed circuit boards were initially developed during World War II for military applications. Over the years, this technology was adopted by electronic manufacturers enabling them to offer cost-effective, compact, and power-efficient solutions.

The printed circuit board is made up of a thin layer of conducting material, usually copper films printed over a non-conducting layer known as substrate. These substrates are made up of special materials which do not conduct electricity. The most commonly used substrates are Resins, Fiberglass, Epoxy Glass, Metal Board, Flame retardant (UL94-V0, UL94-V1) and Polyimides.

Fundamentally PCBs are single layer, double layer, and multi-layer. The layer classification of Printed Circuit Boards is based on the number of conductive layers present in the PCB. The below figure shows the cross-section of various types of PCBs.

Typically, there are two different methods for mounting components on a Printed Circuit Board – through-hole and surface-mount. In the through-hole method, the components consist of thin leads that are pressed through tiny holes in the board on one side and soldered on the other side. The through-hole method is mostly used because of the mechanical stability it provides to the components. In the surface-mount method, the terminals of every component are soldered to the same surface of the Printed Circuit Board directly. Mostly surface-mounted components are small and have a tiny set of solderable pins or Ball Grid Array (BGA) on the component.

PCB Material Classifications

A PCB is broadly classified into three different categories:

1.   Rigid PCB

2.   Flex PCB

3.   Rigid-Flex PCB

Let’s have a look at these categories in detail:

1. Rigid PCB

Rigid PCB, as the name suggests, is a solid, inflexible PCB which cannot be twisted or folded to fit into a specific mechanical enclosure. The Rigid PCB which is also known as the Standard PCB is made up of resin and glass along with copper foils which are generally known as Laminates. These laminates come with specific thicknesses to form a standard double-sided PCB, i.e., 0.4mm, 0.6mm, 0.8mm, 1.2mm, 1.6mm, 2.4mm, etc. Multiple sheets of these laminates are used along with pre-preg to form a multi-layer design.

Rigid PCBs are the cheapest PCBs. These are also known as the traditional PCBs and are more widely used in various electronic products. The best example of a rigid PCB is the computer motherboard. Some of the solid PCBs that we see in our daily lives are washing machine, refrigerator, telephones, and calculators.

A simple construction of the double-sided PCB and multi-layer PCB are shown below:

Benefits of Rigid Printed Circuit Boards:

o   Cost-Effective solution

o   Rugged and reliable

o   High-density circuits

2. Flex PCB

As the name suggests, the Flex PCB is a flexible PCB that can either be folded or twisted to form a specific shape. The flexible nature of these PCBs helps in accommodating a complex PCB in a smaller form factor thereby reducing the product size. The clutters within a given frame, replacing a wires/cables with a simple flex PCB. The substrate in the Flex PCBs is made up of thin insulating polymer films or polyimides similar to the Rigid PCBs. The key objective of Flex PCBs is to improve the bend and make the product compact and flexible with a lesser layer count. The thickness of the copper foils and the polyimides are made thinner to achieve the flexibility of the product. . “The thinner the copper foil, much reliable is the Flex PCBs.” A Stiffener/Backer is attached to the Flex PCBs to prevent plate buckling and support for components.

Ideally, Flex PCBs are a great choice for designing PCBs of high speed and controlled impedance. These PCBs are widely used in aerospace, military, mobile communications, computers, digital cameras and more.

Benefits of Flex PCBs:

o   Allows bending and folding to fit into an arbitrary shape

o   The thin and lightweight enables a substantial reduction in packaging size

o   Flexibility makes it easier for installation and service

o   Effectively reduce the volume of the product

o   Suitable for miniaturized and high-reliability electronic products.

3. Rigid-Flex PCBs

Rigid-flex PCBs are circuit boards that use a combination of both Rigid and Flexible board technologies in a given design. Typically, Rigid-Flex boards consist of multiple layers of Rigid and Flex on a PCB, that are interconnected within a 3D Space. This combination enables efficient space utilization as the flex part of the circuit can be bent or twisted to achieve the desired shape of the mechanical design.

Similar to the Rigid PCBs, standard FR4 layers merged along with polyimide layers, usually in the centre, are used to form a Rigid-Flex PCB. Rigid-Flex PCBs are most commonly found in devices were space/weight are major concerns, such as smartphones, digital cameras, USB, CT Scanners, Pacemakers, and automobiles.

Benefits of Rigid-flex PCBs:

o   Rigid-Flex PCBs enable design freedom, space minimization, weight reduction, that will eventually reduce the packaging requirements significantly

o   Integrates both rigid and flexible circuits to minimize interconnects

o   Dynamic and flexible and fits into smaller spaces

o   Suitable for high-density, miniaturized and high-reliability electronic products

o   Flex circuits eliminate wire routing errors

BACK SIDE CONTROLLER BOARD PCB

FRONT SIDE CONTROLLER BOARD PCB

So, there you have it. The basics of PCB and it’s classification.

Ref:-

1. Mistral Solutions Pvt. Ltd

2. https://www.tempoautomation.com/blog/

3. https://jayconsystems.com/circuit-board-design/