Friday, December 31, 2010

How to Selecting a Video Cable

Selecting Video Cable
There are two factors that govern the selection of cable: the location of cable runs, either indoor or outdoor, and the maximum length of the individual cable runs.
Video coaxial cable is designed to transmit maximum signaling energy from a 75 ohm source to a 75 ohm load with minimum signal loss. Excessive signal loss and reflection occurs if cable rated for other than 75 ohms is used. Cable characteristics are determined by a number of factors (core material, dielectric material and shield construction, among others) and must be carefully matched to the specific application. Moreover, the transmission characteristics of the cable will be influenced by the physical environment through which the cable is run and the method of installation.
Use only high quality cable and be careful to match the cable to the environment (indoor or outdoor). Solid core, bare-copper conductor is best suited to video applications, except where flexing occurs. In locations where the cable must be continuously flexed (i.e., when used with scanners or pan & tilts), use cable intended for such movement. This cable will have a stranded wire core. Use only cable with pure copper stranding. Do not use cable with copper-plated steel stranding because it does not transmit effectively in the frequency range used in CCTV.
The preferred dielectric material is foam polyethylene. Foam polyethylene has better electrical characteristics and offers the best performance over solid polyethylene, but it is more vulnerable to moisture. Use cable with solid polyethylene dielectric in applications subject to moisture.
In the average CCTV installation, with cable lengths of less than 750 feet (228 m),RG59/U cable is a good choice. Having an outside dimension of approximately 0.25 inches, it comes in 500-and 1,000-foot rolls.
For short cable runs, use RG59/U with a 22-gauge center conductor, which has a DC resistance of about 16 ohms per 1,000 feet (304 m). For longer runs, the 20-gauge variety which has a DC resistance of approximately 10 ohms per 1,000 feet will work well. In either case, cables with polyurethane or polyethylene as the dielectric material are readily available.
For installations requiring cable runs between 800 (244 m) and 1,500 feet (457 m),RG6/U is best. Having the same electrical characteristics as RG59/U, its outer dimension also is about equal to that of RG59/U.RG6/U comes in 500-,1000-and 2000-foot rolls, and it may be obtained in a variety of dielectric and outer-jacket materials. Due to its large-diameter center conductor of about 18 gauge,RG6/ U has a DC resistance of approximately 8 ohms per 1,000 feet (304 m) and can deliver a signal farther than RG59/U.
Use RG11/U to exceed the capability of RG6/U. Once again, the electrical characteristics of this cable are basically the same as the others. The center conductor can be ordered in 14-or 18-gauge sizes, producing a DC resistance of approximately 3-8 ohms per 1,000 feet (340 m). Being the largest of the three cables at 0.405 inches, it is more difficult to handle and install.RG11/U cable usually is delivered in 500-,1000-and 2000-foot rolls.
Because of special applications, variations of RG59/U, RG6/U and RG11/U frequently are introduced by manufacturers.
Due to changes in fire and safety regulations throughout the country, Teflon and other fire-retardant materials are becoming more popular as outer-jacket and dielectric materials. In case of a fire, these materials do not give off the same poisonous fumes as PVC-type cables, and therefore, are considered safer.
For underground applications, direct burial cables, made specifically for that purpose are recommended. The outer jacket of this type of cable contains moisture-resisting and other materials that protect the cable, allowing it to be placed directly into a trench.
With numerous choices available, finding the right video cable for each camera application should be easy. After the installation has been properly assessed, read the equipment specifications and complete the appropriate calculations.

Cable Runs
coax cable has built-in losses, the longer and smaller the cable is, the more severe the losses become; and the higher the signal frequency, the more pronounced the losses. Unfortunately this is one of the most common and unnecessary problems currently plaguing CCTV security systems as a whole.
If, for example, your monitor is located 1,000 feet (304 m) from the camera, approximately 37-percent(37%) of the high frequency information will be lost in transmission. The unfortunate aspect of this condition is that it is not obvious. You cannot see information that is not there and may not even realize that information has been deleted. Because many CCTV security systems have cable runs that exceed several thousand feet, unless you are aware of this characteristic of cable, your system may be providing a seriously degraded image.
So, if your cameras and monitors are separated by lengths greater than 750 feet (228 m), you should check to make certain that some provision has been made to guarantee the video signal's transmission strength.

Cable Type* RG59/U = 750 ft.
Cable Type* RG6/U = 1,000 ft.
Cable Type* RG11/U = 1,500 ft.

* = Minimum cable requirements= 75 ohms impedance, All-copper center conductor, All-copper braided shield with 95% braid coverage.

Cable Termination
In video security systems, camera signals must travel from the camera to the monitor. The method of transmission is usually "coax" cable. Proper termination of cables is essential to a system's reliable performance.
Because the characteristic impedance of coax cable ranges from 72 to 75 ohms, it is necessary that the signal travels on a uniform path along any point in the system to prevent any picture distortion and to help ensure proper transfer of the signal from the camera to the monitor. The impedance of the cable must remain constant with a value of 75 ohms. To properly transfer power between two video devices with acceptable losses, the signal output from the camera must match the input impedance of the cable, which in turn must match the input impedance of the monitor. The end point of any video cable run must be terminated in 75 ohms. Usually, the cable run will end at the monitor, which will ensure that this requirement is met.
Usually the video input impedance of the monitor is controlled by a switch located near the looping video (input/output) connectors. This switch allows for either 75 ohm termination if the monitor is the "end point",or Hi-Z for looping to a second monitor. Check equipment specifications and instructions to determine the proper termination requirements. Failure to terminate signals properly usually results in a high contrast, slightly grainy picture. Ghosting and other signal imperfections also may be evident.
It important to note that the BNC connectors , which are usually used for terminating coax cable, are manufactured in two different impedance -75 ohm for video use and 50 ohm for radio use. Most shopkeepers are not a ware of this difference so it is better to check the manufacturer's specification before you buy.

Unsaddled twisted pair (UTP)
UTP cabling is both in expensive and ideal for transmission of video signal up to 1350m. the cabling is run to multiplexer that supports the popular RJ45 connector . Legacy cameras with coax connectors can be retrofit with balun (balanced/unbalanced ) adpters allowing the signal to be converted from the coaxial cable (unbalanced ) to twisted pair (balanced) cable. A typical system consists of a transmitter connected to a coax cable or connector which is then converted to a signal suitable for transmitting over twisted pair cable. On the receiving end of the twisted-pair cable is a receiver that converts the signal back to one suitable for transmission on coax cable.
UTP. Requires only one twisted pair cable to carry power, video and control signals , as opposed to three different proprietary cables with traditional CCTV systems.
While the total cost of UTP cabling can be up to 30% less than traditional CCTV systems over the life of the system, it easily accommodates technological advances such as digital integration IP-based networks and power over Ethernet.
Optical fibre is some times used in this environment where distances would require use of repeaters for signal strength or where EMI. (Elector-Magnetic interference) is an issue.

Fibre Optic Cable
While coaxial cable is the most suitable cable for CCTV signal transmission over short distances it is best to consider other mediums for distances greater than 1 kilometer. The most suitable for these distances is fibre optic.
Fibre optic is a fine strand of glass which is highly transparent. There are two main types referred to single mode and multi-optic fibres. The single mode fibre optic has a high level of efficiency but can transmitting only one mode. Laser transmitters an receivers arousal required for single mode application . Multi -mode fibre optics is thicker and can operate in several modes and can accommodate cheaper forms of transmission media such as infrared . These cables are used main lyover shorter distances while the single mode fibre would be used where distance and performance were critical . The main types of applications for fibre optics are:-
Light Guide fiber-used in instrument panels and lamps it carries visible light only.
Coherent fibre-Normally referred to as coherent bundle because of its construction. This glass fibre will carry an undischarged image of light over a short distance. Its ideal for extending the lens with application in covert surveillance. High performance-For CCTV application we tend to use high performance fibers with a signal transmission media. For CCTV application we have to use the latter , high performance fibers. The glass stransparency quality of the glass is a key factor in its ability to transmit light effectively over distances and this is being improved constantly.
Fiber optic system may consist of a standard camera with the video signal being fed into a fibre optic trasmitter. The transmitter consists of circuits to convert the video signal into a series of modulated pulses . These pulses are then fed to the light source that may either be a laser or light emitting diode (LED) which emits a series of light pulses .these light pulses are focused on to the centre core of the cable which acts as a guide to the light passing along the fibre's lenght. The main light passes straight along the centre of the fibre while a little of the light hits the side of the glass tube. This is reflected back into the centre by the cladding.
This results in very low transmission losses over long distances. Fibre optic cable also has the advantage of not being affected by electromagnetic interference or EMI.

Splitting / Amplifying the Video Signal
Video signal used in CCTV equipment is nominally a one volt peak-to-peak signal and is impedance sensitive to 75 ohms for ideal video reproduction at the monitor. If these parameters are not kept, then the video will degrade.
Distribution Amplification
If the installation of a system requires viewing the video at multiple locations from a single camera, there are a few different ways of accomplishing this. One way is through using a distribution amplifier. This device basically takes the single video signal and reproduces the exact signal into multiple outputs; and in the case of the Pelco DA104DT you would get four identical outputs.
So, if the input signal is a one volt peak-to-peak signal you will get four output signals of the same amplitude. Providing the run distance for the type of coax used is kept within the specified length, no other equipment will be needed to reproduce a nice clear video display on each monitor. Another timesaving feature of the Pelco DA104DT is that there are not adjustments required. Just connect the unit, turn it on, and the installation is complete. If the need arises where more than four signals are required, multiple units can be linked together by simply using one of the output signals as an input signal to the next unit, and so on.
Equalizing Amplification
Due to the many factors that can effect the video signal, it is sometimes necessary to enhance the video signal (as in transmitting a nominal video signal level) directly out of the camera, through RG59 coax to a monitor, while still producing a clear video display across the entire length of the coax. In this case the coax should not exceed 750 feet (228 m).
However, let's say you need to use RG59 because it's more flexible and much easier to work with but the cable length must be 1,500 feet (457 m). The signal at this point is going to be weak and will display a very degraded picture on the monitor. As mentioned, there are many things that can effect signal strength before the signal reaches the monitor. If you find a weak signal, simply pass the weak signal through an equalizing amplifier, make the required adjustments, and once again there will be a good, strong signal that will produce a nice picture.
The Pelco model EA2010 is a post-equalizing amplifier which simply means that this device will be located close to the monitor. There's an advantage to this design in that AC power is usually more readily available at the monitoring location than it is somewhere back up the coax line, and with this type of design it only requires one person to view the monitor display while at the same time making the required adjustments to obtain the nominal signal level.
As mentioned in the example on RG59,the signal strength is good up to nominally 750 feet (228 m). With the Pelco EA2010 amplifying the signal, the same grade of coax can be used in runs of up to 3,000 feet (914 m).
In regard to any equalizing amplification system, there is another type of post-equalizing amplifier that Pelco offers. It is the half-duplex post-equalizing amplifier. This device (as far as the amplification of the video signal is concerned) is exactly like the EA2010.The difference is that the EA2000 was designed specifically for use with any of the Pelco Coaxitron® (up-the-coax) control/transmitter systems. This device enables the video signal requiring amplification to be transmitted over the same coaxial cable over which the control signal is transmitted, whereas if you used the EA2010 it would block the Coaxitron® control signal from being transmitted.

Cabling for IP Cameras
IP convergence means attaching different building and communication systems -- such as data, voice, security cameras and building automation systems -- onto a common network through a common Internet protocol. In the surveillance world, IP convergence means moving from analog to IP cameras.
IP camera technology offers new and expanded features in CCTV surveillance that were previously unavailable on analog cameras. However, performance and scalability can be affected because of poor system infrastructure, as well as product performance.
For organizations to realize the full benefits of IP video surveillance, they must design and build a system that is capable of meeting current and future requirements, which includes allocating sufficient bandwidth to video-carrying traffic that will not congest the network. To do this, they must implement a standards-based structured cabling system that will allow future devices to be added, which will save time and money by providing the biggest return on investment.
Cable selection and bandwidth go hand-in-hand. Considerations when selecting the cable media include number of cameras, type of camera, location of the cameras (environment), distance to the telecom rooms, type of termination equipment and whether PoE will be running through the cable or local power will be provided at the device end. Another factor when selecting cable is the length of time planned to occupy the building.
Today’s TIA standards define cabling types, distances, connectors, cable system architectures, cable performance characteristics, pathways, cable installation requirements and methods of testing installed cable to help system designers and installers select the most efficient cabling for each environment. TIA-recognized structured cabling standards recommend twisted pair copper and fiber-optic cable as the preferred media selection for efficient IP network systems. However, security integrators need to be aware of the range of options available and the pros and cons of each.
Coax Cable
Distances using coax cable can be up to 3,000 feet. This cable is most often found when end users would like to use their installed cable plant, which was installed for analog cameras. However, because an IP camera is equipped with an RJ-45 connection, media converters are needed on each end of the coax cable runs.
Using existing coax cable for running Ethernet to IP cameras is a “band-aid” approach and does not comply with TIA. This is a fast solution, but eventually the cabling system will need to change to a structured cabling system -- through twisted pair or fiber -- especially when higher bandwidth megapixel cameras are required. Running Ethernet over coax is limited to less than 1 GB transmissions. Therefore, as the bandwidth increases on both the camera and the traffic running through the network, coax cable capabilities will be limited.
Twisted Pair
Unshielded or shielded twisted pair cable provides many benefits over coax. Twisted pair, with its RJ connection, allows immediate attachment to the camera. One of the biggest benefits is that twisted pair can provide power over the same cable, eliminating local power at the device end.
There are basically two grades of UTP cable: Cat-5e (100 MHz) and Cat-6 (250 MHz). A Cat-5e cable may be sufficient with its allowable 1 GB/s data rate (depending on the protocol), but Cat-6 operates at a higher data rate (up to 10 GB/s). Because of its improved transmission performance and superior immunity from external noise, systems operating over Cat-6 cabling will have fewer errors than Cat-5e. And, when inducing noise or heat -- such as in PoE and PoE Plus -- Cat-6 has been proven to operate with no latency or fear of dropped packets.
Standards-based twisted pair cabling is limited to 100 meters between the device and the termination point, such as a consolidation point or telecommunications room. The chart on the following page provides cable options for selecting cable based on distance and power. Twisted pair can actually provide a signal farther than 100 meters through active equipment, but this would not meet the TIA standards and therefore would not work if the analog camera is to be replaced with an IP camera.
Fiber-optic Cable
The answer to the distance challenge is fiber-optic cable. Fiber-optic cable can easily operate IP cameras through media conversion, allowing twisted pair patch cords or horizontal UTP cable runs to connect directly to the device and to the terminating equipment in the TR. Even coax-based analog cameras can use fiber-optic cable, but this entails deploying multiplexers in addition to media converters, which can become costly per channel.
Fiber-optic cable’s other advantages include its small diameter and biggest bandwidth carrying capacity. Fiber-optic cable is immune to electrical interference, which makes it ideal for harsh environments such as lightning, power plants and industrial manufacturing. In addition, fiber optic is a more secure signal -- because it is harder to tap into.
Since power cannot run through glass, fiber-optic cable cannot directly carry PoE. But it can be jacketed with copper conductors in the form of a composite cable. Certain cables on the market provide Ethernet to be carried through fiber strands while power runs through stranded copper conductors. Distances up to 3,850 feet can be achieved. Because the cable carries lowvoltage power -- up to 25 watts as defined by PoE Plus and IEEE 802.3at -- this cable is actually defined as a Class 3 copper cable with fiber. The total distance is limited by the media power provided through the active media converter on the termination side, as well as the gauge of the copper. The more power needed, the thicker the gauge.


Challenging Decisions and Changing Standards

Security camera locations vary depending on each installation. When the TIA standards were written, the devices in work areas consisted of telephones, modems, data terminals, fax machines and desktop computers. Although the TIA standards originally applied to data and voice Ethernet applications, mainly in office environments, they were written to be modular, providing scalability for adding IP devices. However, electronic safety and security devices, particularly surveillance equipment, create unique challenges, mainly due to environmental factors.
The BICSI organization, together with ANSI, is currently reviewing the existing standards and has created a standards group to focus solely on physical infrastructure for ESS devices. To be designated “ANSI/BICSI 005” upon completion, this standard will define cabling design and installation requirements, as well as provide recommendations specific to ESS systems, including surveillance, access control, paging, signage, and even fire detection and alarm systems.
The standard also will provide information for access control, intrusion detection and surveillance systems, as well as guidance on other topics, such as meeting the IP needs of fire detection and alarm systems. And as more and more devices find their way to the network, the selection of cabling and physical infrastructure becomes more critical.

Now we are discussed about coaxial cable's Construction
RG59/U, RG6/U and RG11/U is circular. Each has a center conductor surrounded by dielectric insulating material, which in turn is covered by a braid to shield against electromagnetic interference. The outer covering is the jacket.

The coaxial cable's two conductors are separated by a nonconductive or dielectric material. The outer conductor (braid) acts as a shield and helps isolate the center conductor from spurious electromagnetic interference. The outer covering helps physically protect the conductors.

Center Conductor:
For CCTV applications, solid copper conductors are required, which is carrying a video signal. Center conductor comes in varying diameters usually ranging from 14 gauge to 22 gauge. The structure of the center conductor generally is solid copper or copper-clad steel, designated as bare copper weld or BCW. For CCTV applications, solid copper conductors are required. Copper clad, copper weld, or BCW cables have much greater loop resistance at baseband video frequencies and should never be used for CCTV. To determine the type, look at the cut end of the center conductor. Copper clad cable will be silver in the center intead of copper all the way through. Variation in the size of the center conductor has an overall effect on the amount of DC resistance offered by cable. Cables which contain large diameter center conductors have lower resistances than cables with smaller diameters. This decreased resistance of large diameter cable enhances the ability of a cable to carry a video signal over a longer distance with better clarity, but is also more expensive and harder to work with.

For applications where the cable may move up/down or side-to-side, select cable that has a center conductor consisting of many small strands of wire. As the cable moves, these strands flex and resist wear due to fatigue better than a cable with a solid center conductor.

Dielectric Insulating Material
Center conductor is an evenly made dielectric insulating material which is available in some form of either polyurethane or polyethylene. This dielectric insulator helps determine the operating characteristics of coax cable by maintaining uniform spacing between the center conductor and its outer elements over the entire length of the cable. Dielectrics made of cellular polyurethane or foam are less likely to weaken a video signal than those made with solid polyethylene. This lower attenuation is desirable when calculating the loss/length factor of any cable. Foam also gives a cable greater flexibility, which may make an installer's job easier. Although foam dielectric material offers the best performance, it can absorb moisture, which will change its electrical behavior.

Because of its rigid properties, solid polyethylene maintains its shape better than foam and withstands the pressures of accidental pinching or crimping, but, this characteristic also makes it slightly more difficult to handle during installation. In addition, its loss/length attenuation factor is not quite as good as foam, which should be considered in long cable runs.

Braid or Shield
Cables using aluminum foil shielding or foil wrap material are not suitable for CCTV installations. Wrapped around the outside of the dielectric material is a woven copper braid (shield), which acts as a second conductor or ground connection between the camera and the monitor. It also acts as a shield against unwanted external signals commonly called electromagnetic interference or EMI, which may adversely affect a video signal.

The amount of copper or wire strands in the braid deter- mine how much EMI it keeps out. Commercial grade coax cables containing loosely woven copper braid have shielding coverages of approximately 80%. These cables are suitable for general purpose use in applications where electrical interference is known to be low. They also work well when the cable is to be installed in metal conduit or pipe, which also aids in shielding.

If you are not sure of the conditions and are not running pipe to screen out more EMI, use a cable with a "maximum shield" or heavy braid--type cable containing more copper than those of commercial grade coax. This extra copper obtains the higher shielding coverage by having more braid material made in a tighter weave. For CCTV applications, copper conductors are needed.

Cables using aluminum foil shielding or foil wrap material are not suitable for CCTV work. Instead, they usually are intended to transmit radio frequency signals such as those employed in transmitter systems or in master antenna distribution systems.

Aluminum or foil cable may distort a video signal to such a point that signal quality may be far below the level required for proper system operation, especially over long cable runs, and therefore not recommended for CCTV use.

Outer Jacket
The last component comprising a coax cable is the outer jacket. Although other materials are used, polyvinyl chloride, or PVC, is commonly used in its construction. Available in many colors such as black, white, tan, and gray, the jacket lends itself to both indoor and outdoor applications.

Newly developed some Video & Power Combination Cable is there in market.
This combination cable featuring BNC to BNC video connectors and 2.1mm DIN male & female for power supply connection. A BNC to RCA adapter is also included. Also included are two pigtails to allow breakout of power connectors to use with screw terminal power supplies and cameras. This cable is available in 50 foot and 100 foot lengths. Maximum distance for DC power should not exceed 100 feet.

Specials thanks to all of Manufacturers, Suppliers & Exporters to provide the information.

Saturday, December 25, 2010

How a Smart Card Reader Works

Smart Card Readers are also known as card programmers (because they can write to a card), card terminals, card acceptance device (CAD) or an interface device (IFD). There is a slight difference between the card reader and the terminal. The term 'reader' is generally used to describe a unit that interfaces with a PC for the majority of its processing requirements. In contrast, a 'terminal' is a self-contained processing device.
Smart cards are portable data cards that must communicate with another device to gain access to a display device or a network. Cards can be plugged into a reader, commonly referred to as a card terminal, or they can operate using radio frequencies (RF).
When the smart card and the card reader come into contact, each identifies itself to the other by sending and receiving information. If the messages exchanged do not match, no further processing takes place. So, unlike ordinary bank cards, smart cards can defend themselves against unauthorized users and uses in innovative security measures.

Communicating with a Smart Card Reader
The reader provides a path for your application to send and receive commands from the card. There are many types of readers available, such as serial, PCCard, and standard keyboard models. Unfortunately, the ISO group was unable to provide a standard for communicating with the readers so there is no one-size-fits-all approach to smart card communication.
Each manufacturer provides a different protocol for communication with the reader.
• First you have to communicate with the reader.
• Second, the reader communicates with the card, acting as the intermediary before sending the data to the card.
• Third, communication with a smart card is based on the APDU format. The card will process the data and return it to the reader, which will then return the data to its originating source.
The following classes are used for communicating with the reader:
• ISO command classes for communicating with 7816 protocol
• Classes for communicating with the reader
• Classes for converting data to a manufacturer-specific format
• An application for testing and using the cards for an intended and specific purpose
Readers come in many forms, factors and capabilities. The easiest way to describe a reader is by the method of its interface to a PC. Smart card readers are available that interface to RS232 serial ports, USB ports, PCMCIA slots, floppy disk slots, parallel ports, infrared IRDA ports and keyboards and keyboard wedge readers. Card readers are used to read data from – and write data to – the smart card. Readers can easily be integrated into a PC utilizing Windows 98/Me, 2000, or XP platforms. However, some computer systems already come equipped with a built-in smart card reader. Some card readers come with advanced security features such as secure PIN entry, secure display and an integrated fingerprint scanners for the next-generation of multi-layer security and three-factor authentication.
Another difference in reader types is on-board intelligence and capabilities. An extensive price and performance difference exists between an industrial strength reader that supports a wide variety of card protocols and the less expensive win-card reader that only works with microprocessor cards and performs all processing of the data in the PC.
The options in terminal choices are just as varied. Most units have their own operating systems and development tools. They typically support other functions such as magnetic-stripe reading, modem functions and transaction printing.
To process a smart card the computer has to be equipped with a smart card reader possessing the following mandatory features:
• Smart Card Interface Standard – ISO 7816 is an international standard that describes the interface requirements for contact-type smart cards. These standards have multiple parts. For instance, part 1, 2 and 3 are applicable to card eaders. Part 1 defines the physical characteristics of the card. Part 2 defines dimension and location of smart card chip contacts. Part 3 defines the electronic signals and transmission protocols of the card. Card readers may be referred to as conforming to ISO 7816 1/2/3, or in its simplified term, ISO 7816.
• Driver – This refers to the software used by the operating system (OS) of a PC for managing a smart card and applicable card reader. To read a smart ID card, the driver of the card reader must be PC/SC compliant which is supported by most card reader products currently available. It should be noted that different OS would require different drivers. In acquiring card readers, the compatibility between the driver and the OS has to be determined and ensured.

Desirable Features in a Smart Card Reader
Card Contact Types refers to how the contact between a card reader and a smart card is physically made. There are two primary types of contact: landing contact and friction contact (also known as sliding or wiping). For card readers featuring friction contact, the contact part is fixed. The contact wipes on the card surface and the chip when a card is inserted. For card readers featuring the landing type, the contact part is movable. The contact "lands" on the chip after a card is wholly inserted. In general, card readers of the landing type provide better protection to the card than that of the friction type.
Smart card readers are also used as smart card programmers to configure and personalize integrated circuit cards. These programmers not only read data, but also put data into the card memory. This means that not only CPU based smart cards, but also simple memory cards can be programmed using a smart card reader. Of course the card reader must support the appropriate protocol such as the asynchronous T=0, T=1 or synchronous I2C protocols.
It won't take long before smart card readers become an integral part of every computer – and, subsequently, the lives of computer users. Computer systems with keyboards that have smart card reader/writer integration are also available.
Smart card readers are also accessible in the form of USB dongle. USB dongles are frequently used with GSM phones, which contain a SIM smart card. Additionally, phone numbers can be edited on a PC using the USB smart card dongle.

Key features and characteristics of smart cards
Cost: Typical costs range from $2.00 to $10.00. Per card cost increases with chips providing higher capacity and more complex capabilities; per card cost decreases as higher volume of cards are ordered.
Reliability: Vendors guarantee 10,000 read/write cycles. Cards claiming to meet International Standards Organization (ISO) specifications must achieve set test results covering drop, flexing, abrasion, concentrated load, temperature, humidity, static electricity, chemical attack, ultra-violet, X-ray, and magnetic field tests.
Error Correction: Current Chip Operating Systems (COS) perform their own error checking. The terminal operating system must check the two-byte status codes returned by the COS (as defined by both ISO 7816 Part 4 and the proprietary commands) after the command issued by the terminal to the card. The terminal then takes any necessary corrective action.
Storage Capacity: EEPROM: 8K - 128K bit. (Note that in smart card terminology, 1K means one thousand bits, not one thousand 8-bit characters. One thousand bits will normally store 128 characters - the rough equivalent of one sentence of text. However, with modern data compression techniques, the amount of data stored on the smart card can be significantly expanded beyond this base data translation.)
Ease of Use: Smart cards are user-friendly for easy interface with the intended application. They are handled like the familiar magnetic stripe bank card, but are a lot more versatile.
Susceptibility: Smart cards are susceptible to chip damage from physical abuse, but more difficult to disrupt or damage than the magnetic stripe card.
Security: Smart cards are highly secure. Information stored on the chip is difficult to duplicate or disrupt, unlike the outside storage used on magnetic stripe cards that can be easily copied. Chip microprocessor and Co-processor supports DES, 3-DES, RSA or ECC standards for encryption, authentication, and digital signature for non-repudiation.
First Time Read Rate: ISO 7816 limits contact cards to 9600 baud transmission rate; some Chip Operating Systems do allow a change in the baud rate after chip power up; a well designed application can often complete a card transaction in one or two seconds. Speed of Recognition Smart cards are fast. Speed is only limited by the current ISO Input/Output speed standards.
Proprietary Features: These include Chip Operating System (COS) and System Development Kits.
Processing Power: Older version cards use an 8-bit micro-controller clockable up to 16 MHz with or without co-processor for high-speed encryption. The current trend is toward customized controllers with a 32-bit RISC processor running at 25 to 32 MHz.
Power Source: 1.8, 3, and 5 volt DC power sources.
Support Equipment Required for Most Host-based Operations: Only a simple Card Acceptance Device (that is, a card reader/writer terminal) with an asynchronous clock, a serial interface, and a 5-volt power source is required. For low volume orders, the per unit cost of such terminals runs about $150. The cost decreases significantly with higher volumes. The more costly Card Acceptance Devices are the hand-held, battery-operated terminals and EFT/POS desktop terminals.

Why consider smart cards?
IF a portable record of one or more applications is necessary or desirable, AND
Records are likely to require updating over time, Records will interface with more than one automated system, Security and confidentiality of records is important
THEN, smart cards are a feasible solution for making data processing and transfer more efficient and secure.
Advantages of Smart Cards:
• The capacity provided by the on-board microprocessor and data capacity for highly secure, off-line processing
• Adherence to international standards, ensuring multiple vendor sources and competitive prices
• Established track record in real world applications
• Durability and long expected life span (guaranteed by vendor for up to 10,000 read/writes before failure)
• Chip Operating Systems that support multiple applications
• Secure independent data storage on one single card
Barriers to Acceptance of Smart Cards:
• Relatively higher cost of smart cards as compared to magnetic stripe cards. (The difference in initial costs between the two technologies, however, decreases significantly when the differences in expected life span and capabilities- particularly in terms of supporting multiple applications and thus affording cost sharing among application providers- are taken into account).
• Present lack of infrastructure to support the smart card, particularly in the U.S., necessitating retrofitting of equipment such as vending machines, ATMs, and telephones.
• Proprietary nature of the Chip Operating System. The consumer must be technically knowledgeable to select the most appropriate card for the target application.
• Lack of standards to ensure interoperability among varying smart card programs.
• Unresolved legal and policy issues related to privacy and confidentiality or consumer protection laws.

Smart Card Applications
Financial Applications
• Electronic Purse to replace coins for small purchases in vending machines and over-the-counter transactions.
• Credit and/or Debit Accounts, replicating what is currently on the magnetic stripe bank card, but in a more secure environment.
• Securing payment across the Internet as part of Electronic Commerce.
Communications Applications
• The secure initiation of calls and identification of caller (for billing purposes) on any Global System for Mobile Communications (GSM) phone.
• Subscriber activation of programming on Pay-TV.
Government Programs
• Electronic Benefits Transfer using smart cards to carry Food Stamp and WIC food benefits in lieu of paper coupons and vouchers.
• Agricultural producer smart marketing card to track quotas.
Information Security
• Employee access cards with secured passwords and the potential to employ biometrics to protect access to computer systems.
Physical Access Control
• Employee access cards with secured ID and the potential to employ biometrics to protect physical access to facilities.
Transportation
• Drivers Licenses.
• Mass Transit Fare Collection Systems.
• Electronic Toll Collection Systems.
Retail and Loyalty
• Consumer reward/redemption tracking on a smart loyalty card, that is marketed to specific consumer profiles and linked to one or more specific retailers serving that profile set.
Health Care
• Consumer health card containing insurance eligibility and emergency medical data.
Student Identification
• All-purpose student ID card (a/k/a campus card), containing a variety of applications such as electronic purse (for vending machines, laundry machines, library card, and meal card).

Optical vs Digital Zoom

After reading the title of this article, you might be asking yourself, “Zooming is just zooming, right?”  Is there really a difference between optical and digital zooming?  You may be surprised to learn that yes, there is definitely a difference.

Optical zoom is considered as true zooming.  In other words, the lens optics on the camera itself are used to zoom in on an object.  This is opposed to digital zooming, in which the camera processes an image internally and focuses on a certain portion of that image.  That certain portion is simply enlarged, thus creating a zoom effect.

One such term is zoom.  Pan-tilt-zoom (PTZ) cameras and some fixed cameras have lenses that zoom in on an object.  In other words, it magnifies the object of the video, such as a car in a parking lot, so that it can be seen in much better detail.

Zoom is a very important feature of video camera lenses.  By making the image larger, it is possible to watch intrusions developing from some distance away from the doors to a building.

In a secure parking lot, for example, if someone bypasses the guard shack, a zoom camera mounted on the side of a building over a hundred feet away should be able to capture easily the progression of the automobile as it gets closer to the building.  This gives time for a security guard to respond before the intruder is leaning over his shoulder with a gun pointed to his head.
This may seem to be an extreme example, but it is one of the things that separates zoom cameras from fixed ones.

When comparing the zoom features of a camera lens, it is absolutely critical to understand the difference between digital zoom and optical zoom.
Digital Zoom
Imagine that you are looking at a Rembrandt in a museum, and you want to get closer to a beautiful pastoral scene to see the master’s details of a country hillside.

Since the guard is paying attention, you have to settle for taking a regular picture of the Rembrandt from a safe distance away.  Then, you have the picture developed and you now hold in your hand the photo you took at the museum.

You have an idea.  Now that you have the picture in hand, you decide to get someone to blow up the picture on a copier so that you can see the hillside better.  At least, that’s what you think you’re going to get.

When you blow the picture up to the same size of the full original painting, you are disappointed.  Now, it just looks like a bad case of psoriasis and you have missed an opportunity to bring Rembrandt home with you.

Digital zoom is very similar to this.  It cuts out a section on a distant image, not actually getting you closer to the object but by magnifying the lack of clarity that already exists.  In other words, if you can’t tell what the details are from a distance, you won’t be able to tell what they are by making it seem closer by digitally manipulating the captured picture.

Digital zoom, while not exactly useless, does not actually help very much when you need to focus on an object as if you are standing much closer to it.

Optical Zoom
Put yourself back in the art museum for a moment.  You are standing in front of the Rembrandt and you really want to get closer to it so you can see the finer details of the hillside.  This time, you don’t have a camera.  Instead, the sleepy-faced guard has his head turned, and you jump over the barriers and put your eyes about six inches away from the painting.

Suddenly, all the details of the hillside are shown.  You see the individual blades of grass, the lines on the outer edges which distinguish an object from its background.  You can see it clearly, and your awe of Rembrandt grows to new heights.

Optical zoom is like standing closer to the object.
In our opening example about the car crashing the guard shack, it would be as if the security guard is only a few feet away from the automobile, allowing him to head off the intruder before he reaches the front door.


The value of optical zoom in video surveillance is priceless.  While it is not quite as good as you will see on television cop shows, it is still a great tool for keeping an eye on your property.