Wednesday, October 30, 2013

The Role of Fiber in Video Networks / IP Video Over OFC

As a kind of Media Converter, Fiber media converters this known as fiber transceivers or Ethernet media converters, are quite obvious networking devices those make it possible for connecting two dissimilar media types such as twisted pair Cat 5 or Cat 6 cable with fiber optic cabling. They may be essential in interconnecting fiber optic cabling-based systems with existing copper-based, structured cabling systems. Fiber ethernet media converters support many different communication protocols including Ethernet, Fast Ethernet, Gigabit Ethernet, as well as multiple cabling types such as twisted pair, multi-mode and single-mode fiber optics. Fiber media converters can connect different Local area network (LAN) media, modifying duplex and speed settings.
For video security and surveillance professionals, analog video-based CCTV systems have been the tried-and-true technology for many years. However, these same professionals are the first to recognize the migration of Ethernet into new applications beyond the typical office LAN and how Ethernet is playing a role and introducing new challenges to video security networking.
For years, Transition Networks has been talking about the benefit of fiber optic cabling and how media converters can provide a cost effective method of deploying fiber in local area networks and overcome the limitations and drawbacks of copper UTP cabling. These same benefits can be realized by security and surveillance professionals when they integrate fiber into their video networks.

For example, switching media converters can connect legacy 10BASE-T network segments to more modern 100BASE-TX or 100BASE-FX Fast Ethernet infrastructure. For instance, existing Half-Duplex hubs may be attached to 100BASE-TX Fast Ethernet network segments over 100BASE-FX fiber. When expanding the reach with the LAN to span multiple locations, fiber transceivers are useful in connecting multiple LANs to form one large campus area network that spans more than a wide geographic area.
Fiber media converters support a variety of data communication protocols including Ethernet, Fast Ethernet, Gigabit Ethernet, T1/E1/J1, DS3/E3, as well as multiple cabling types for example coax, twisted pair, multi-mode and single-mode fiber optics. Media Converter types range from small standalone devices and PC card converters to high port-density chassis systems offering many advanced features for network management.
On some devices, Simple Network Management Protocol (SNMP) enables proactive management of link status, monitoring chassis environmental statistics and sending traps to network managers in case of a fiber break or perhaps link loss on the copper port.
Fiber media converters can connect different Local area network (LAN) media, modifying duplex and speed settings. Switching media converters can connect legacy 10BASE-T network segments to more recent 100BASE-TX or 100BASE-FX Fast Ethernet infrastructure. For instance, existing Half-Duplex hubs can be linked to 100BASE-TX Fast Ethernet network segments over 100BASE-FX fiber.


When expanding the reach of the LAN to span multiple locations, media converters are of help in connecting multiple LANs to make one large campus area network that spans more than a limited geographic area. As premises networks are primarily copper-based, media converters can extend the reach from the LAN over single-mode fiber approximately 130 kilometers with 1550 nm optics.
The coaxial cabling utilized in analog CCTV networks suffers from transmission distance issues. The accepted distance for coax is 185 meters. While this has worked well in the past, the demands for increasing the surveillance coverage have pushed camera locations beyond the standard distances.
As for Ethernet and IP cameras, this distance is even more restrictive at 100 meters. Offering transmission over greater distances, fiber cabling is starting to play a signifigant role in surveillance networks. Fiber cabling supports transmission distances up to 2km on multimode fiber without the need for repeaters or signal boosters - with even greater distances available on single mode fiber.
Indoor applications with florescent lights, electric motors, and other sources of electromagnetic interference (EMI) along with sources of radio frequency interference (RFI) can cause disruptions and poor picture quality issues for video over Coax and UTP cabling. The transmission from cameras located outdoors is susceptible to these same conditions as well as the effect from electrical/lightening storms. Due to the nature of how data is transmitted over fiber optic cabling, it does an excellent job of blocking this electrical interference and protecting the quality of the data.
Wavelength-division multiplexing (WDM) technology in the LAN is very beneficial in situations where fiber is at limited supply or expensive for provision. In addition to conventional dual strand fiber converters, with separate receive and transmit ports, there are also single strand fiber converters, which can extend full-duplex data transmission approximately 70 kilometers more than one optical fiber.
 Other benefits of media conversion include providing a gentle migration path from copper to fiber. Fiber connections can help to eliminate electromagnetic interference. Also fiber media converters pose being a cheap solution for many who need it switches for use with fiber along with have enough money to pay for them, they can buy ordinary switches and make use of fiber media converters to make use of making use of their fiber network.
 As a fiber optic media converter, you can use it anywhere in the network to integrate newer technology with existing equipment to support new applications, technologies and future growth. Fiber Converters are key aspects of Optical Networking because its long distance operation, high bandwidth capacity and reliablity make fiber optics probably the most desired channel for data communications. Instead of costly, across-the-board upgrades, media converters can extend the productive lifetime of the existing cabling along with the active equipment. FiberStore offers a wide variety of professional fiber optic media converters for Fast Ethernet, Gigabit Ethernet, Serial Datacom interfaces and E1 or T1 voice/data communications.
To aid in the deployment of fiber in these security and surveillance networks, Transition Networks has specifically designed a copper to fiber media converter for analog video applications. These converters are available to support both fixed-focus cameras as well as pan-tilt-zoom (PTZ) cameras. As IP cameras begin to replace analog cameras, traditional Ethernet media converters can be used for the fiber integration. Most IP cameras also support power-over-Ethernet (PoE) technology which makes installation of the cameras easier since the camera can be powered over the UTP Ethernet cable. PoE switches, PoE injectors, and PoE media converters are all available to create the functional network needed in today’s hybrid video security and surveillance applications.

Tuesday, October 29, 2013

Hack CCTV Cameras using Google Search

Hack CCTV Cameras using Google Search

ARE YOU WILLING TO BE A HACKER THEN FOLLOW THESE EASY STEPS 

HACKING A CCTV CAMERA ITS NOT JUST A EASY ONE ,BUT I SHOW YOU VERY EASY.FOLLOW THIS STEPS

Hack The IP Based CCTV Cameras Using Google

1-open GOOGLE 
2-search any of these line in GOOGLE......! 

inurl:”ViewerFrame?Mode=
intitle:Axis 2400 video server
inurl:/view.shtml
intitle:”Live View / – AXIS” | inurl:view/view.shtml^
inurl:ViewerFrame?Mode=
inurl:ViewerFrame?Mode=Refresh
inurl:axis-cgi/jpg
inurl:axis-cgi/mjpg (motion-JPEG)
inurl:view/indexFrame.shtml
inurl:view/index.shtml
inurl:view/view.shtml
liveapplet
intitle:”live view” intitle:axis
intitle:liveapplet
allintitle:”Network Camera NetworkCamera”
intitle:axis intitle:”video server”
intitle:liveapplet inurl:LvAppl
intitle:”EvoCam” inurl:”webcam.html”
intitle:”Live NetSnap Cam-Server feed”
intitle:”Live View / – AXIS”
intitle:”Live View / – AXIS 206M”
intitle:”Live View / – AXIS 206W”
intitle:”Live View / – AXIS 210?
inurl:indexFrame.shtml Axis
inurl:”MultiCameraFrame?Mode=Motion”
intitle:start inurl:cgistart
intitle:”WJ-NT104 Main Page”
intext:”MOBOTIX M1? intext:”Open Menu”
intext:”MOBOTIX M10? intext:”Open Menu”
intext:”MOBOTIX D10? intext:”Open Menu”
intitle:snc-z20 inurl:home/
intitle:snc-cs3 inurl:home/
intitle:snc-rz30 inurl:home/
intitle:”sony network inurl:”ViewerFrame?Mode=
intitle:Axis 2400 video server
inurl:/view.shtml
intitle:”Live View / – AXIS” | inurl:view/view.shtml^
inurl:ViewerFrame?Mode=
inurl:ViewerFrame?Mode=Refresh
inurl:axis-cgi/jpg
inurl:axis-cgi/mjpg (motion-JPEG)
inurl:view/indexFrame.shtml
inurl:view/index.shtml
inurl:view/view.shtml
liveapplet
intitle:”live view” intitle:axis
intitle:liveapplet
allintitle:”Network Camera NetworkCamera”
intitle:axis intitle:”video server”
intitle:liveapplet inurl:LvAppl
intitle:”EvoCam” inurl:”webcam.html”
intitle:”Live NetSnap Cam-Server feed”
intitle:”Live View / – AXIS”
intitle:”Live View / – AXIS 206M”
intitle:”Live View / – AXIS 206W”
intitle:”Live View / – AXIS 210?
inurl:indexFrame.shtml Axis
inurl:”MultiCameraFrame?Mode=Motion”
intitle:start inurl:cgistart
intitle:”WJ-NT104 Main Page”
intext:”MOBOTIX M1? intext:”Open Menu”
intext:”MOBOTIX M10? intext:”Open Menu”
intext:”MOBOTIX D10? intext:”Open Menu”
intitle:snc-z20 inurl:home/
intitle:snc-cs3 inurl:home/
intitle:snc-rz30 inurl:home/
intitle:”sony network camera snc-p1?
intitle:”sony network camera snc-m1?
site:.viewnetcam.com -www.viewnetcam.com
intitle:”Toshiba Network Camera” user login
intitle:”netcam live image”
intitle:”i-Catcher Console – Web Monitor”camera snc-p1?
intitle:”sony network camera snc-m1?
site:.viewnetcam.com -www.viewnetcam.com
intitle:”Toshiba Network Camera” user login
intitle:”netcam live image”
intitle:”i-Catcher Console – Web Monitor”

and u will get ip like

99.424.344.434/etc etc 

Friday, October 4, 2013

Analog CCTV storage

When buying a security DVR system on a strict budget, one of the features you will want to pay special attention to is the amount of storage that comes with your DVR. You’ll want to keep a enough archived history in case you’re out of town or away from your home / business for an extended period of time, but how much storage is enough? Do you want to gamble and keep enough storage for just a handful of days? A week? A month? The longer the time frame, the more storage you’ll need.

Key Factors Affecting the Amount of Storage Space

  • # of Days Required
  • Quality of Cameras (# of TVL / Megapixels)
  • DVR Motion Settings
  • DVR Record Rate

For the sake of argument and nice round numbers, we’ll say that a 400 TVL camera takes up 1 MB of memory per minute of recorded footage. By those numbers, a 500GB hard drive would be able to record 512,000 consecutive minutes, or 355.56 days, of completely fictional video footage. Now, let’s say we have a 600 TVL camera that occupies 2.5 MB of memory per minute of recorded footage. That means that the same 500GB hard drive will only be able to record 204,800 consecutive minutes, or 142.22 days, of fake video feeds.

Q: How do I decide how much storage capacity to allow when I'm specifying a digital video recorder?
A: There's no simple answer – every installation must be assessed individually. Key factors affecting storage are picture quality, frame rate, compression method and the length of time for which images are required.

Q: What are the picture quality options?
A: The lowest resolution now normally adopted is CIF (352X288). CIF is generally the rule of thumb when calculating storage capacity, but higher resolutions, such as 2CIF (704X288), 4CIF (704X576) and D1 (720x576), are now often specified. As a guide, CIF images recorded using MPEG4 compression are around 10Kb, 2CIF images around 20Kb and 4CIF around 40Kb. Megapixel cameras usually produce images between 80 and 200Kb each. A balance must be struck between resolution, archive time and budget.

Q: What about frame rates?
A: Always allocate frame rates appropriate to the application. Live motion is 25 full frames-per-second (fps) but each image can be 40Kb or more (4CIF). This means about 1Mb of storage per second of data from each camera – about 3.6Gb per hour. Using 12.5 fps halves storage requirements and still permits lip-sync audio. Where lip sync isn't needed, 4 fps is often acceptable, with corresponding savings in storage.

Q: How do compression methods affect the amount of storage?
A: Significantly! The challenge is to reproduce high quality, high-resolution video using the smallest amount of drive space, but remember that there are no free lunches! If a DVR claims much smaller file sizes than comparable machines with the same compression method, beware – reduced file sizes usually mean reduced quality.

Q: How long should recordings be kept?
A: This depends on the application, but don't automatically adopt the "31-day standard", a hangover from VHS tape. Digital recording is much more flexible. Discuss the options and costs with your client. In general, look at periods where video data cannot be recovered. If this happens to be 20 days, then 20 to 22 days of archive are appropriate.

Q: Is there no easier solution?
A: When in doubt, seek the advice of several professional suppliers to ensure a balanced view. Also, remember that storage is now much less expensive, so over-specifying a little won't significantly affect project costs.
If your DVR has 4SATA/6SATA/8SATA etc then your DVR can take 30days/60Days/90Days/120Days etc. You can used 1TB/2TB/4TB SATA hard Disk for storage. Capture 16-channel DVR Model: DTR4816HD has 8Port SATA.

If we use an ATX Footprint two 9U Rack Enclosures. Each one is Heavy, very nearly 100 Lbs with NOTHING in it. Each Enclosure has 50 Hot Swap Bays for Hard Drives and Two Hard Mount Locations. Today we can put 4.0 Terabyte Hard Drives (SATA-600) in there...up to 100 of them in each of the boxes These drives are SATA Drives with 128 Mb of cache on each one. Additionally, we can add two more hard drives in a hard mount. That gives us up to 400 TB of Storage. As hard drive sizes continue to grow, our storage capability increases. What was literally out of reach for many organizations just a year or so ago, is easy to attain today. You may use 8 Drive, 12 Drive, 16 Drive & 24 Drive Enclosures available.

Extra Note: By Western Digital on Date: 03/12/2014
One major component of every surveillance system is, of course, the cameras. Buyers should opt for kits that offer nothing less than a High Definition (HD) camera that can capture images at a resolution of 1,280 x 720 pixels or even a Full High Definition (FHD) camera that can capture images at 1,920 x 1,080 pixels. High resolution image capture is important as it becomes easier to spot what users are looking for when reviewing the surveillance footage – the last thing users want is for a perpetrator's face (as an example) to be a mess of indistinguishable pixels. And, whether HD or FHD, the cameras should also be able to capture images at a rate of no less than 30 frames per second (FPS). This, again, will help when it comes to reviewing crucial footage.

An equally key component of surveillance systems is the storage being used – in fact this component is what can really make or break the effectiveness of the entire system. If a system is being purchased without storage, the buyer should avoid the temptation to go out and purchase the cheapest hard drive he can find. In most cases this will be some sort of desktop drive that is not designed for 24/7 use, won't be able to capture HD or FHD video from multiple cameras without dropping frames and isn't designed to consume less power and thus generate less heat. This last point is a major concern in terms of reliability, as excessive heat can drastically reduce the life of a hard drive and can also adversely affect read and write operations when the drive is being used in the surveillance system.
A buyer should, ideally, look for hard drives that offer surveillance-relevant optimizations such as AllFrame technology, which not only improves playback performance but works with ATA streaming to reduce errors and frame loss. The drives should also be designed for 24/7 usage and offer features such as IntelliPower, which enables a drive to consume less power and thus generate less heat. This is ideal when a drive is going to be installed in a passively cooled storage enclosure, whether on its own or in-conjunction with several other hard drives.

Considering the high importance of storage in surveillance systems, vendors such as WD have introduced dedicated table-top surveillance drives that boast the aforementioned technology optimizations. The recently introduced WD Purpledrive family has been compatibility tested with hundreds of surveillance systems and offer up to 4TB of capacity on a single drive. Purple drives are uniquely designed for mainstream surveillance systems and offer the perfect blend of performance, reliability and cost - the drives are recommended for use in systems with between 1-to-8 drive bays and where between 1 to as many as 32 HD cameras are used.

Besides selecting the right type of drive, one also has to consider the amount of storage that is needed. Just how much storage is needed varies depending on the specifications of the cameras and then length of time users intend to keep your video surveillance data. The amount of time businesses maintain surveillance data varies drastically but the norm is gradually shifting from as little as 7 days to 30 days. (Certain organizations are legally required to retain data for even longer periods of time.) A general rule of thumb is the longer you are able to retain data, the better it is.

Since the video surveillance enter into megapixel IP era, the required storage capacity significantly increased, which directly increased the demands for hard disc drives.  Western Digital chose to cooperate with Hikvision to launched Purple series HDDs which are dedicated for video surveillance application. Seagate also launched ST4000VX000, which is a surveillance HDD addresses the increasing need for high-resolution cameras and camera counts, and ensures cost-effective performance and durability in always-on surveillance systems. when decide to use HDD, the first thing you want to consider is capacity. You may need to estimate the storage capacity for required video recording. Typically users opt to save costs by simply matching current capacity needs to your video surveillance demands. However, this may actually cost you more and create more upgrade issues in the long run. To choose the HDD capacity, you may take your future needs into consideration. The 4K video resolution is for times higher than your full HD 1080p resolution, which in turn, resulting in requires more than four times the amount of storage space as 1080p. Now, 500GB HDD will disappear from market, the maximum HDD storage capacity can reach up to 6TB, which can provide enough storage capacity for 64 cameras.

Do not use regular desktop computer HDDs for video surveillance. Since the working environment and condition is different, video surveillance requires a HDD that's not susceptible to the issues including heat-related failure or vibration from other drives, which can result in loss of video frames, data loss. What's the difference between regular computer HDD and surveillance dedicated HDD? Compared with computer HDD, surveillance dedicated HDD are designed for 90% write time and only 10% read time. The surveillance-specific drives are also engineered to reliably perform in multi-drive systems with RAID support. Optimized performance and reliability can minimize the effect of vibration from other drives with RV sensors, which mean fewer points for potential failure.

Here we have provided Storage size of Cameras in GB per Day according to their Formats H.264 Compression.

Resolution
Storage Per Day in GB
1 MP
 25-30 GB Aprox
2 MP
 35-40 GB Aprox
3 MP
 60-65 GB Aprox