Showing posts with label Facility code. Show all posts
Showing posts with label Facility code. Show all posts

Tuesday, April 1, 2025

26-Bit Wiegand Format & Work

26-Bit Wiegand Format & Work? 

The name “Wiegand” comes from its creator, the German-born engineer, John R. Wiegand, who in the 1970’s discovered that wires made of a cobalt, iron and vanadium alloy will switch polarity when run through strong magnetic fields. Placing a sensor coil nearby will be capable of picking up the change in polarity as a high-voltage pulse, and then translate that pulse into data. He used these discoveries to create what became known as Wiegand wires and Wiegand cards.

A Wiegand card uses two short wires, which store data magnetically in the card; these two wires are known as Data low, or Data0 and Data high, or Data1. When the card is pulled through the reader, the wires transmit the either high or low voltage signal as 1 and 0’s, respectively, creating a binary data line for authenticating the swipe card’s credentials. (There actually is a third wire, as well, providing common ground).

There are a few different variations of the Wiegand protocol in existence, but the original is the most common, known as the 26-bit Wiegand format, or often just the 26-bit format. This is a very common open format, meaning that virtually anyone can buy compatible cards and readers and program them to work using the 26-bit Format. It uses one parity bit, followed by 8 bits of facility code, 16 bits of ID code, and another trailing parity bit, for a total of 26 bits. This was the standard for a long time and remains in use in many systems, though a variety of different extensions have now been built off it.

Card readers and other components of access control systems need to speak a common language to function and work properly. Like most other forms of technology, access control systems use a binary number system to communicate. One of the most common formats for access systems is the 26-bit Wiegand format. It was first developed over 50 years ago, and because it’s so simple and accessible, it’s still used today.

What is the 26 bit Wiegand format, how does it work, and where is it used? Learn more below. 

What is 26-Bit Wiegand Format? 

The 26-bit Wiegand format is a format for binary encoded data used mainly on access control devices. It’s an extremely common open format, and most access control systems are automatically designed to be able to read 26-bit Wiegand. Because it’s an open format, anybody can buy and use cards in this format, and it is possible for duplicate cards to exist.

Although various companies make access control systems, one of the most popular brands is HID. The brand is so popular that people often refer to any access control system as an HID system. However, various brands and manufacturers make 26-bit Wiegand format access cards, not just HID. If you buy or use any basic access system, it’s highly likely that the system runs using the 26-bit Wiegand format.

Key Features of the 26-Bit Wiegand Format

  1. 26-Bit Data: The format consists of 26 bits, divided into three parts: 8 bits for the facility code, 16 bits for the card number, and 2 bits for parity.
  2. Facility Code: The first 8 bits represent the facility code, which identifies the site or organization.
  3. Card Number: The next 16 bits represent the card number, which is unique to each cardholder.
  4. Parity Bits: The last 2 bits are parity bits, used for error detection.
  5. Even/Odd Parity: The parity bits use even/odd parity, where the first parity bit is the even parity of the first 12 bits, and the second parity bit is the odd parity of the last 12 bits.

This format is an industry standard known as H10301. The term “bit” refers to the numbers in the code, so each code consists of 26 numbers. Wiegand refers to the Wiegand protocol, which is the name for the wiring standard. It’s named after John R. Wiegand, whose discoveries in the 1970s laid the basis for the standard 26 bit format. 

The first and last numbers in the 26-bit Wiegand format are beginning and ending bits known as parity bits. They are not part of the unique identification laid out in the code. Bits two through nine make up the facility code. The facility code consists of eight bits. Bits 10 through 25 make up the ID number. The ID number consists of 16 bits. 

Here is how the code in 26-bit Wiegand appears when P stands for parity bit, F stands for facility code bit, and I stands for ID number bit: 

PFFFFFFFFIIIIIIIIIIIIIIIIP

The 26-bit Wiegand format allows for 256 possible facility codes and 65,535 possible ID numbers. When combining both unique identifiers, this allows for 16,711,425 unique access cards.

The 26-bit Wiegand format consists of a sequence of 26 bits, divided into three main parts:

·        Facility Code (FC): The first 8 bits (bits 1-8) represent the facility code, which identifies the specific facility or organization issuing the card.

·        Card Number (CN): The next 16 bits (bits 9-24) represent the card number, which is unique to each cardholder.

·        Parity Bit (PB): The last 2 bits (bits 25-26) are parity bits, used for error detection.

Rather than being written out with numbers or letters as in the example above, the code is represented in an access card or other access device with a series of wires. We’ll explain more about how that works below.

How Does 26-Bit Wiegand Format Work? 

Back in the 1970s, Weigand discovered that cobalt, iron, and vanadium alloy wires switch polarity when they enter a magnetic field. He also found that sensor coils can pick up the change in polarity. This laid the groundwork for the modern Weigand protocol where access card readers are able to translate and read the code that lies hidden in the wires inside access devices. 

26-bit Wiegand access cards have three wires inside: data low (data0), data high (data1), and a ground wire. Because binary numbers are expressed as 0 or 1, data0 and data1 are used to create those binary numbers that the access control system can read. When the data0 wire transmits a signal, the computer reads it as 0, and when the data1 wire transmits a signal, the computer reads it as 1. The wires are uniquely designed to create a different code for each cardholder.

When a device that’s encoded with the format passes through the field of a card reader, it picks up on the unique sequence of bits contained in the device. Then, it grants access if the facility code and ID number in the device are allowed access. Of course, the system can also deny access if the code in the card or other access device does not match an approved code.

Here's a step-by-step explanation:

1.   Card Swipe: A user swipes their access control card through a reader.

2.   Data Extraction: The reader extracts the 26-bit Wiegand code from the card's magnetic stripe or RFID chip.

3.   Bit Transmission: The reader transmits the 26-bit code, one bit at a time, to the access control panel or secure authentication device.

4.   Bit Representation: Each bit is represented by a specific voltage or signal level, with 0 volts typically representing a binary 0 and 5 volts representing a binary 1.

5.   Data Format: The 26-bit code consists of:

·        Facility Code (8 bits): Identifies the facility or organization issuing the card.

·        Card Number (16 bits): Unique to each cardholder.

·        Parity Bits (2 bits): Used for error detection.

6.   Authentication: The access control panel or secure authentication device verifies the received 26-bit code against stored data, ensuring the facility code, card number, and parity bits match.

7.   Access Decision: If the verification is successful, the device grants access or performs the desired action.

Where Is the 26-Bit Wiegand Format Used?

The 26-bit Wiegand format is most often used in standard access control systems. You’ll find wires corresponding to the 26 bits in access cards, key fobs, fingerprint readers, and other access control devices. 

The data on a standard Wiegand-formatted device is not encrypted. This, of course, presents a vulnerability and is one of the reasons this format has lost some of the popularity it previously held. It’s also possible for duplicate 26-bit Weigand access devices to exist, which is a major concern for industries that highly value security. 

You’ll often find access control systems that use the 26-bit Wiegand format in older buildings because it was once the gold standard. Unless there is a malfunction in the equipment, there isn’t often an immediate need for companies to upgrade to a different format even though the 26-bit Wiegand format is becoming a bit outdated. It still works very well for most use cases. 

However, newer buildings and newer access control systems are beginning to favor different formats, such as Open Supervised Device Protocol (OSDP). This can increase security because it is encrypted. For this reason, you’re also less likely to find 26-bit Wiegand formats in buildings and campuses where security is of utmost importance.

Nonetheless, the 26-bit Wiegand format is still used today for many reasons. It’s easy to use, it’s readily available, and most card reader door locks and access control systems are equipped to read the format. If you purchase or install an access control system and you don’t specify or request a particular format, it’s likely your system uses the 26-bit Wiegand format.

Advantages of the 26-Bit Wiegand Format

  1. Wide Compatibility: The 26-bit Wiegand format is widely supported by access control systems and RFID readers.
  2. High Security: The use of parity bits and a large data format provides high security against data tampering and unauthorized access.
  3. Easy Implementation: The 26-bit Wiegand format is easy to implement and integrate with existing access control systems.
  4. Scalability: The 26-bit format provides a large address space, allowing for a high number of unique card numbers and facility codes.

Limitations of the 26-Bit Wiegand Format

  1. Limited Data Capacity: The 26-bit Wiegand format has limited data capacity, which can make it difficult to store additional data, such as biometric information.
  2. No Encryption: The 26-bit Wiegand format does not provide encryption, which can make it vulnerable to eavesdropping and data interception.


Thursday, October 15, 2020

Contactless Access Credentials & Egress

Contactless Access Credentials & Egress 

THE business landscape changing so dramatically over the past few months — possibly irrevocably — the task for many in security, including for consultants, integrators, dealers and manufacturers. As businesses and organizations begin to reopen, many are rethinking the way they budget for security, including access control, video surveillance and intrusion Alarm.

It’s amazing that a microscopic virus from China could virtually bring the world to a standstill. The 2020 global pandemic has reshaped the way people work, learn and play on every conceivable level. In addition to the devastating impact on global health and safety, COVID-19 has infected the health of the global economy.

The growing call to return to work will surely accelerate many of the physical (not social) distancing, sterilization and occupancy issues that we are currently facing. Hopefully, modern medicine will rise to the challenge sooner than later with a COVID-19 vaccine, but this may take some time even with accelerated testing and approvals.

Commonly touched items that can cause the spread of coronavirus (and other infectious disease) can include things like elevator buttons, ATM and checkout keypads, door knobs and handles, keyboards and mice, and door/entry access control panels — just to name a few. When you think about all of the “touchable” items that you interact with each day it becomes a daunting task to stay away from them and feel safe, clean and virus-free. Well, it's no surprise that right now, businesses are feeling the need to provide solutions and upgrade their safety and security as the workforce begins to come back to the office or plan for that to happen soon.

Contactless credentials are the most common component used in an access control system and while many look alike externally, important differences exist. “Contactless credentials and touchless access control can help reduce the number of surfaces that people touch on campus and can help reduce contact transmission” said Arindam Bhadra founder SSA Integrate.

Credentials Overview

While other credential options exist, the most common choice is RFID 'contactless' types. Nearly 90% of systems use contactless cards or fobs built as unpowered devices that are excited and read when brought close to a reader unit. This 'wireless power' process is called resonant energy transfer.

In Proximity Reader technology the reader itself emits a field collected by the card, eventually reaching enough of a charge that temporarily powers a wireless data transfer between the two. The image below details typical internal components of the type, where the wire antenna collects energy, the capacitor stores it, and when full discharges ICC chip (credential) data back through the antenna to the reader:

In general, all contactless credentials work this way but the exact parameters like operating frequency, size of credential data, encryption, and format of the data greatly vary in the field. In the sections that follow, we examine these parameters in depth.

Contactless Credentials Dominated by Giants

One of the biggest differences in contactless credentials is the format of the data it contains, typically determined by the manufacturer. Upwards of three-quarters of contactless credentials use formats developed or licensed by HID Global and NXP Semiconductor.

HID Overview

Since the market began migrating away from 'magstripe' credentials in the early 1990's, HID Global gained marketshare with its 125 kHz "Prox" offerings. Now part of ASSA ABLOY, HID has become the most common security market credential provider, and OEM of products for access brands including Lenel, Honeywell, and Siemens. The company's best-known formats include:

·     "Proximity": an older 125 kHz format, but still regularly used and specified even in new systems

·      iClass: an HID Global specific 13.56 MHz 'smartcard'

HID is the most common choice for credentials in the US. Because of commanding market share, HID is able to license the use of its credential formats to a variety of credential and reader manufacturers. Even when marketing general 'ISO 14443 compliant' offerings, HID strictly follows "Part B" standards (vs Part "A" - described in more detail later).

NXP Overview

Formerly Phillips Semiconductor, Europe-based NXP offers a number of 'contactless' credential components used in a number of markets - security, finance, and industrial. With widespread adoption of ISO standards in credential specifications, NXP offers a catalog of types built to spec, including:

·    MIFARE PROX: NXP's 125 kHz format built on early drafts of ISO standards, but not as widely adopted as HID's "Proximity" lines

·  MIFARE/DESFire: an ISO Standards-based NXP 'smartcard' format, also operating on 13.56 MHz the 'DESFire' moniker was introduced in the early 2000s to distinguish the format from 'MIFARE Classic' credentials. DESFire credentials feature stronger encryption that required higher performing chips. The 'Classic' format fell under scrutiny for being vulnerable to snoop attacks, and DESFire countered this threat. Because these improvements were made only to credentials, and existing MIFARE readers could still be used, the new format became known as 'MIFARE/DESFire'.

Unlike HID, NXP's credential formats are 'license-free' and the according standards are available for production use for no cost. NXP manufacturers all ISO 14443 product to "Part A" standards. NXP's market share is largest outside the US, mostly attributed to the early (starting in ~1990's) adoption of HID Global formats inside the US, but the brand's formats are often the primary ones used in Europe and Asia for physical access control.

US vs the World

Because of NXP Semiconductor’s strength in EMEA and the lack of licensing, MIFARE, DESFire, and the associated derivatives are popular outside the US.

However, HID Global's strongest markets are in the Americas, especially in the US. Despite the additional cost of licensing compliant credentials and readers, the company also produces products that use the unlicensed NXP formats and has equal or greater operability as a result.

125 kHz vs 13.56 MHz

The credential's RF frequency factors a key role in its performance. Because readers can only scan credentials operating at specific matching frequencies, this attribute is the first to consider. If frequency and format do not match, credentials are simply not read. The chart below shows the frequency of popular formats:

Perhaps the biggest difference between 125 kHz and 13.56 MHz frequencies is credential security. 125 kHz formats do not support encryption and are easily snooped or spoofed. However, 13.56 MHz formats are encrypted (usually 128 bit AES or greater) and credential data can only be read by a device that is specifically given the key to do so. 

Deciphering Credential Types

One of the most challenging jobs for integrators and end users alike is simply identifying which credential a system is using. The market is crowded with hundreds of options with no guarantees of compatibility for items that all appear to be a blank white card. The image below details four different credential types with dramatically different performance and security characteristics, yet they all look the same to the untrained eye:

For contactless types, you must know three attributes that are not typically clearly printed or overtly labeled on the credential:

·     Format Name: This designates how and how much data the credential transmits, usually defined by an ISO standard for Wiegand formats. For example H10301 is the typical 26 bit format, H10304 is HID's Wiegand 37 bit, and so on. The best way to confirm the format used by a card is to locate a box label of existing cards (See image below 'Card Format Details') to interpret the raw hexadecimal output as a specific format. If card boxes are not available, researching the credential type used by checking the format used in the Access Control Management Software application, typically in the cardholder and reader configuration settings.

·       Facility Code: This attribute is NOT printed on the card in most cases. This piece of information is also typically found on box labels but can be decoded using the same online calculators for format name. In certain cases, access systems must be configured to accept specific facility codes and some low-end systems may limit acceptable codes to one specific number. Without knowing this code, credentials are not sure to work.

·       Card ID/Serial Number (CSN/UID): In many cases, the ID number is embossed or printed on the card. This number is the 'unique ID' that ties a user to a specific badge. While concurrent numbers are not an issue, redundant numbers are, and the same Card ID and Facility Coded credential cannot be issued twice in the same system. The image below shows.

Interestingly, the Sales Order/Batch Number information printed on the card is often not used by the access system at all and is only printed to assist in researching the origin of the card as shipped to a specific distributor, end user, or dealer.

In some cases, a card vendor or distributor will 'read' an unknown card for a fee, but turn around times may take several business days.

Often, the box for cards currently in production is often the quickest, easiest way to gather all three pieces of this information, if not a reordering part number, as shown below:

The ISO/IEC 14443 Division

Very little separates HID's iClass from NXP's MIFARE offerings, and if not for ambiguous interpretation of an ISO standard, they would 'look' the same to most readers. However, because early versions of the standard left room for differentiation, HID and NXP designed their 'compliant' standards with a different encryption structure.

The end result is both versions of credential claim 'ISO 14443 Compliance', but are not entirely interchangeable. To reconcile this difference, ISO revised 14443 to include parts 'A and/or B' to segregate the two offerings. The default, basic serial number of cards is readable in both A & B parts, but any encoded data on the card is unreadable between the two because the original standard left room for implementation ambiguity.

In general, because there is no licensing cost in using 'Part A' standards, many low-cost, non-US target market, and new reader products start here. However, readers marketed specifically in the US or from vendors with a broader global market license use 'Part B' compliance common to HID.

For example, this TSDi reader supports 14443-A, but not 14443-B, meaning in practical terms in does not support HID's 13.56 MHz iClass formats, but does support NXP's 13.56 MHz MIFARE/DESFire formats:

In contrast, HID iClass readers support both 'A' and 'B' along with the non-ISO specific 'CSN' such that either type of credentials will work with these readers:

13.56 MHz Smartcard Interoperability

While the 'Part A & B' division in ISO 14443 separates formats from being the same, it does not always mean they are unusable with each other. Portions of ISO 14443 are the same in both parts, including the 'Card Serial Number'. For some access systems, this is the unique number that identifies unique users, and because this number is not encoded, it will register in 'non-standard' readers:

·    CSN/UID String: Essentially the card's unique identifier is readable because it is not stored in the deep 'encrypted' media. Many simple EAC platforms use only this number to define a user, and instead use the internal database to assign rights, schedules, and privileges.

·    Encoded Read/Write: However, the vast majority of storage within the card is encrypted and unreadable unless compliant readers are used. Especially for access systems using the credential itself for storage (e.g.: Salto, Hotel Systems) and for multi-factor authentication (e.g.: biometrics) high security deployments, the simple CSN is not sufficient.

The CSN Loophole

In terms of security, not all credential details are encrypted. The 'Card Serial Number' (defined by ISO standards) for 13.56 MHz cards can often be read regardless of underlying format, modulation method, or encryption. The CSN may be usable as a unique ID by the system, but the full data set of the credential will not be available.

For smaller systems with only a few doors and a hundred or fewer cardholders, using the CSN as the primary ID is common due to the ease of enrollment in using CSNs as unique badge numbers. However, for high-security sites where access identity encryption is required by standard or when credentials are used for multiple integrated systems, using CSNs to identify issued cardholders is often not approved. Rather, the card's encrypted data is required instead.

Form Factor

Credential shapes are not just limited to cards or fobs. The size and method of hosting a credential can include stickers, tokens, cell-phone cases, or even jewellery.

The form factor of the credential often is an important consideration in overall durability and service life. For example, while a white PVC card may be ideal to print an ID badge on and hang from a lanyard, it can easily be bent or broken in a rough environment. A key fob, while unsuitable for printing a picture on, is designed to be durable enough to withstand abuse, harsh environment exposures, and even submersion in water.

The right form factor choice should be dictated by the user and the user's environment, and generally, all major credential types have numerous form factor options to suit.

Touchless Switches

Touchless wall switch makes opening a door simple and germ free. Blue LED back-lighting highlights the switch at all times, other than during activation. This provides a visual reference of the switch’s location in low light conditions. Its low-profile design makes it blend into your wall.



Thursday, February 20, 2020

HID Proximity Cards Programming

HID Proximity Cards Programming

Proximity cards, also known as Prox cards or access control cards, are contactless ID cards or keyfobs containing programming that is “read” by a card reader to control and secure physical access.
Inside each card or keyfob is an integrated circuit containing specific numerical programming and a coiled antenna, which increases the range at which the card can be read.  Prox cards have no internal power source, so there are never any batteries to replace.

Below checklist highlights your most important considerations when ordering and programming HID prox cards.
Programming
______ Will program – have HID Prox programming equipment on site
______ Need programming completed with order (See the three programming considerations below)
1.   Formatting
_____ Standard 26-bit format (Can be ordered directly online)
_____  HID Prox or HID iClass Format (H10301)
_____  Indala Flex Format (40134)
_____  Indala Casi-Rusco Format (C10106)
_____ Custom format (Contact HID or your authorized expert)

Note: The programming format for your HID prox card is determined by your card reader’s system requirements. If you are reordering, you can look at the end label of the last order’s shipping box for the code. The most common is a 26-bit format indicated by code H10301.

2.   Facility/Site Code
_____ Not required – Generic code is fine for our facility
_____ Required – We have a specific protocol for specifying facility codes
_____ Required – Customize new cards must have the same facility code.

Know more ? Click on http://arindamcctvaccesscontrol.blogspot.com/2016/08/facility-code-or-site-code.html
3.   Starting Card Number
_____ No external card numbering needed
_____ Sequential card numbering is needed:
_____  External only
_____  Matching internal/external
_____  Matching internal/non-matching external
_____  Random internal/non-matching sequential external
Note: It is important that you do not overlap card numbering ranges if you have only one facility code. If you have multiple facility codes, it is possible to use the same card number ranges in each facility, as each card reader uses a combined facility code and card number for access control.

Frequency
_____ Low Frequency (125 kHz) HID Prox / Indala Flex / Indala Casi-Rusco
_____ High Frequency (13.56 MHz) HID iClass
Front Packaging/Graphics
_____ HID Standard Artwork
_____ Plain White
_____ Custom Artwork* – Specify Custom Artwork Number
Back Packaging/Graphics
_____ HID Standard Logo
_____ Plain White
_____ Custom Artwork* – Specify Custom Artwork Number
Slot Punch
_____ No Slot Punch (Printed location of vertical and horizontal slot punch will remain)
_____ Vertical Slot Punch (Printed location of horizontal slot punch will remain)
_____ Horizontal Slot Punch (Printed location of vertical slot punch will remain)
*Custom Artwork
You can add custom artwork to your HID Prox Cards by contacting HID or your authorized ID card Expert.
Just remember any configuration is possible, and we are always standing by to walk you through the ordering process. 
Step 1 – Find the Right HID Prox Format and Part Number

HID manufacturers a number of credential formats. The type of HID credential you use will depend on your access control system. So your first step in finding the right credential is to check your HID System, which should specify the correct prox format.
HID assigns a Format code to each Prox Card that indicates how the internal programming of your cards will be read and is determined by your card reader system requirements. This code can be found on the end label of the box in which the cards are shipped to you. Look at your existing box if you are unsure about your format, because it is important to know which format is required by your system.
For example, the standard HID Prox format is 26-bit indicated by code H10301. Some formats are considered proprietary by HID and can only be ordered offline by contacting HID or your authorized ID card Expert.

Reordering Tip & Cheat Sheet
Reordering credentials? Check the box label from your original credentials or the actual credential itself. Then use the base part number to find your prox card or fob.
Step 2 – Specify Your Programming Information
After determining the correct base part number, choose your programming specifications. Each HID prox card not only includes the base part number, but also a series of letters to indicate a Credential’s appearance options (e.g., LGSMV).
When ordering, your HID prox card or keyfob will have a combination of the following information. Each prox card may have slightly different options, but the key categories remain the same.
Base Part Number
(1326, 1386, 2020, 2050, 1536, 1586, etc)
Programming/Frequency
L – Programmed, Low Frequency (125 kHz) HID. Programming information is specified at time of order.
C – Programmed, Low Frequency (125 kHz) Casi Rusco Format. (Not commonly ordered) Programming information is specified at time of order.
N – Non-Programmed, Low Frequency (125 kHz). Programming information NOT required – only for locations with HID Prox programming equipment on site (Not common)*
*Note: Only large organizations that have HID Programming capabilities should order non-programmed cards. Many customers confuse the process of synching your new credentials to your system with ‘programming’ them.

Front Packaging/Graphics
S – HID Standard Artwork – Vinyl with Matte Finish
M – Plain White Vinyl with Matte Finish
G – Plain White PVC with Gloss Finish
A – ProxCard II with Adhesive Front (Only HID 1326 Cards)
B – Black with HID Standard Artwork (Only HID 1391 Prox Patch)
K – Plain Black Finish, (No Artwork) (Only HID 1391 Prox Patch)
G – Plain Gray Finish, (No Artwork) (Only HID 1391 Prox Patch)
C – Custom Artwork – Specify Custom Artwork Number
Back Packaging/Graphics
S – HID Standard Logo
G – Plain White PVC with Gloss Finish
C – Custom Artwork – Specify Custom Artwork Number2
Card Numbering
M – Sequential Matching Internal/External (Printed)
N – No External Card Numbering
S – Sequential Internal/Sequential Non-Matching External (Printed)
R – Random Internal/Non-Matching Sequential External (Printed)
O – Sequential External Only (Printed)
A – Sequential Matching Internal/External (Engraved)
B – Sequential Internal/Sequential Non-Matching External (Engraved)
C – Random Internal/Non-Matching Sequential External (Engraved)

Slot Punch
N – No Slot Punch (Printed location of vertical and horizontal slot punch will remain)
V – Vertical Slot Punch (Printed location of horizontal slot punch will remain)
H – Horizontal Slot Punch (Printed location of vertical slot punch will remain)
Custom Artwork
You can add custom artwork to your HID Prox Cards by contacting one of HID member

Step 3: Choose Your Card Range and Facility Code
Facility Code – also sometimes called “Site Code”, this is part of the internal programming that is common to all cards on an order. Your organization may or may not have a specific protocol for specifying facility code, either by location (as I know e.g. Code 50 for a New York office and code 80 for Los Angeles) or other variable. Because most systems generally accommodate multiple facility codes – and read both the facility code and card number to validate a card – it is typically not a requirement that the facility code be the same as your existing cards for them to be read correctly.
Starting Card Range Number – this is the specific internal card number that is uniquely programmed into each card issued by HID.  The cards are programmed with sequential numbering based on the starting number you specify.  It is important that you do not overlap card ranges.  If two cards are identically programmed, your system will not be able to distinguish between them.  It is possible to use the same card range if you are using multiple facility codes (see above), because each card reader uses the combined facility code and card number for access control.
Step 4: Choose Between Pre-Selected or Custom Programming
·         Pre-Selected Programming – These credentials contain default programming numbers that are pre-determined by HID. They can be ordered in small quantities, usually ship within 1-2 business days, and offer the same security as custom-programmed credentials.
·         Custom Programming – Custom credentials contain personalized facility codes and/or sequential card numbers. Custom Facility Codes must be between 1-255, and Card Numbers between 1-65,500. Custom programmed credentials must be ordered in quantities of 100 or more and take up to 10 days to ship.

Example Final Part Number for HID Prox Card 1326LGSMV
For this sample order of an HID Prox Card 1326, the card appearance options (LGSMV) break down as follows:
L = Programmed, Low Frequency (125 kHz) HID. Programming information is specified at time of order.
G = Plain White PVC with Gloss Finish on front
S = Base with Molded HID Logo
M = Sequential Matching Internal/External (Printed)
V = Vertical Slot Punch.

Other HID 1326 Prox Card Configurations
Examples of other HID 1326 card appearance configurations are:
Final Part Number: 1326LGSNV
L = Programmed, Low Frequency (125 kHz) HID. Programming information is specified at time of order.
G = Plain White PVC with Gloss Finish on front
S = Base with Molded HID Logo
N = No External Card Numbering
V = Vertical Slot Punch
Final Part Number: 1326LSSMV
L = Programmed, Low Frequency (125 kHz) HID. Programming information is specified at time of order.
S = ProxCard II Artwork – Vinyl with Matte Finish
S = Base with Molded HID Logo
M = Sequential Matching Internal/External (Printed)
V = Vertical Slot Punch
Final Part Number: 1326LSSNV
L = Programmed, Low Frequency (125 kHz) HID. Programming information is specified at time of order.
S = ProxCard II Artwork – Vinyl with Matte Finish
S = Base with Molded HID Logo
N = No External Card Numbering
V = Vertical Slot Punch

Friday, August 5, 2016

Facility Code or Site Code

What is a Facility Code ?
There are many different proximity card formats, but the proximity cards that we sell are encoded with a "Standard" 26-Bit Wiegand format.  Like other proximity and RFID cards, an HID card is simply an ID card which enables proximity technology in its everyday functions. HID cards, as well as other types of RFID cards and smart cards, are popular for access control, as well as other functions like public transportation and employee ID.This format actually contains two sets of numbers:
  •         A 3-digit "facility code", which can range from 1-255
  •         A 5-digit "card number", which can range from 1-65,535.

Most HID proximity cards and key fobs have the 5-digit card number printed on the card.  The 3-digit facility code, however, is printed only on the box in which your cards are shipped.
Gate Keeper can be configured to interpret the Wigand data as either a 16-bit number or a 24-bit number.  The 16-bit number will contain only the 5-digit card number.  The 24-bit number will contain the facility code and card number for a total of 8 digits.  For example, if the facility code for a card is "123" and the card number is "56789" then the 24-bit (8-digit) number read from the card will be "12356789".
A Facility Code is a number encoded on access cards that is intended to represent a specific protected facility or building. Not all card formats support a Facility Code, but the most common card data format in use today does support it — the industry’s original open (i.e. non-proprietary) 26-bit format. The 26-bit format has two data fields: a Facility Code (8 bits) and a Card Number (16 bits), plus two parity bits; thus, the Facility Code number can be a number be between 0 and 255, and the Card Number can be between 0 and 65,535.
With only 65,535 card numbers available across the cards of all customers using the 26-bit card data format, duplicate card numbers are inevitable; therefore, the first purpose of the Facility Code was to enable customers in close proximity to each other to differentiate their set of cards from another customer’s cards. Ideally, each manufacturer would try to manage the facility numbers it issued to various customers in a specific area to minimize the occurrence of duplicates. A card with a Facility Code not matching those used by that specific customer would be denied access, typically generating “Access Denied – Wrong Facility Code” messages.
The 26 bit Wiegand standard format is the industry standard. Card manufacturers such as HID, Indala and AWID sell cards with this format to any dealer. This 26 bit format is recognized by all access hardware.

Over the years, formats with a higher number of bits (33, 37, 48, 50)  have been added to increase card security.


However, some of the higher bit formats are  "proprietary", and usually carry a higher price tag. One exception is the HID 37 bit proprietary format, priced similarly to a 26 bit card.


As an example, if Company A has cards numbered from 1 to 1000, with facility code 230, they would be programmed as follows:

230 - 00001

230 - 00002
230 - 00003 .......up to 230 - 01000

Company B could have the same serial numbers, but with facility code 180, and their cards would be:
180 - 00001
180 - 00002
180 - 00003........up to 180 - 01000

To grant access, an access control system validates the facility code AND the serial number.  Company A will reject Company B cards, and viceversa, even if they have the same serial number, because the facility code does not match.
The HID 37 bit Wiegand format with Facility Code is H10304.  The format consists of 2 parity bits, 16 bit Facility Code and 19 bit Cardholder ID fields.
PFFFFFFFFFFFFFFFFCCCCCCCCCCCCCCCCCCCP
EXXXXXXXXXXXXXXXXXX..................
..................XXXXXXXXXXXXXXXXXXO
P = Parity
O = Odd Parity
E = Even Parity
X = Parity mask
F = Facility Code, range = 0 to  65,535
C = Cardholder ID, range = 0 to 524,287


HID recently announced that the standard format for their Corporate 1000 proximity cards has changed from a 35 bit card format to a new 48 bit card format.

Originally, all Corporate 1000 format cards offered the 35 bit structure (“Corporate 1000 – 35”). The Program’s success created the need for a new format (“Corporate 1000 – 48”).  The larger 48 bit structure change allows for an increased number of individual cards numbers available, from just over 1,000,000 individual card numbers per format for Corporate 1000 – 35 to over 8,000,000 individual card numbers for the new Corporate 1000 – 48 format.
IMPORTANT NOTE: Prox cards are custom programmed with the facility code and start numbers requested by you. For this reason it is important to have the correct numbers at the time an order is placed.