Showing posts with label ONVIF. Show all posts
Showing posts with label ONVIF. Show all posts

Sunday, February 1, 2026

Open Access Controller Guide

 Open Access Controller Guide

In the access control market, there are many software platforms, but only a few companies that make non-proprietary door controllers.

In 2019, Axis released a 3rd party-only controller, while HID purchased Mercury Security.

In this note, we contrast common access hardware providers and which brands of hardware many access management systems use.

·        The 3rd party offerings of Axis, HID, Isonas, and Mercury

·        How their pricing compares

·        Why ONVIF for Access Control Is Not A Big Factor

·        A chart explaining which controllers 34 notable access platforms support

·        The three factors that may complicate takeovers

What is an Access Control System?

An access control system is a security measure designed to regulate who can enter or exit a building or specific areas within it. These systems can range from simple mechanical locks to advanced biometric and cloud-based solutions. Modern access control systems often include features like keycards, PIN codes, mobile credentials, and facial recognition technology.

Select Access Hardware Components

Your access control system will require various hardware elements:

·        Control Panels: The brain of the system, managing access points and credentials.

·        Readers: Devices that scan keycards, biometrics, or mobile credentials.

·        Electric Locks: Magnetic or strike locks that secure doors.

·        Door Sensors: Detect whether a door is open or closed.

·        Request to Exit Buttons: Allow users to leave secured areas.

·        IT: If you run an on-premises access control system you will need a computer to run the software on and network connectivity.

Choose hardware compatible with your desired technology and ensure it meets your building’s security standards.

'Open' Controller Options

In the access market, the number of manufacturers producing door controller hardware is comparatively small to the total number of vendors writing management software.

While some companies choose to produce their own proprietary controller designs, a significant portion of the market chooses to integrate with 'open' 3rd party devices manufactured by others.

For the access control market, the most widely recognized non-proprietary door controllers are produced by three companies:

·        Axis: The company offers two different controllers, the A1001 and A1601. Both models are two-door controllers, but the A1601 is built with higher memory capacity, faster processors, form C relays. Both units use Axis' VAPIX API, although the free embedded Axis Entry Manager software is only an option for the A1001.

·        HID Global: Owned by Assa Abloy, HID also manufactures two series of controllers, Edge and Aero, that with a firmware update can be added to over 15+ different access systems.

·        Isonas: The Allegion owned access hardware manufacturer opened it's line of controllers to being integrated into other platforms in 2017. The company's line of combo readers/controllers are IP based and PoE powered.

·        Mercury Security: Purchased by HID in 2017, the hardware manufacturer sells only to other businesses. Mercury produces several lines of controllers and expansion modules, including the IP-based LP and EP series and Series 3 Redboard panels with a common firmware framework. Over 35 companies use Mercury designed hardware, or other hardware using Mercury's standard firmware.

These offerings compose most of the 'open' controller options in the market.

Defining 'Open' for Access

In the case of access control and the broader security market, 'Open' has a different general meaning than IT and software development use. 'Open' for access essentially means 'non-proprietary' that is potentially compatible with several systems.

This differs from 'openness' in other tech areas where 'open-source' generally means use is free, collaboration is public, and licensing (if implemented) is light and provisional.

Cost Comparison

While pricing varies for each controller, the hardware cost alone may also be subject to additional software licensing. However, on a hardware only basis, pricing looks like:

·        Axis A1001 & A1601: The A1001 is widely available online for ~$500, while the A1601 runs ~$700.

·        HID Edge EVO: The single door controller is available from distribution with a street price of ~$350, with options for units with integrated readers for ~$450.

·        HID Aero: The base controller and two-door expansion module is available through resellers for ~$650, but total cost varies depending on which base controller and how many expansion modules are used.

·        Isonas: The company's line of RC-04, PowerNet, and IP Bridge controllers range from $700 (single door) - $1,100 (three door bridge) depending on configuration of the included reader.

·        Mercury Security: None of these products are available as direct purchases from Mercury or through distribution. Single door controllers typical range in price from $250 - $400, but the final cost is often heavily negotiated and drops for projects with large door counts.

Compatibility Chart

The chart below provides a look at leading access brands, and which door controllers they work with:-

The Disadvantages of Proprietary Solutions

Discussions around the “myth” of open architecture often come from advocates of proprietary solutions who argue against the flexibility of open systems. However, this perspective can be compared to the fox guarding the henhouse—those who benefit from vendor lock-in are the ones discouraging open architecture. The primary aim of proprietary manufacturers is to secure ongoing reliance on their products, leaving organizations with little ability to switch to alternative solutions without a major cost.

Hardware installation is typically the most expensive part of an initial Physical Access Control System (PACS) deployment. By opting for a proprietary solution, organizations essentially commit to that manufacturer for the duration of the product’s lifespan. If the solution no longer meets operational needs, a costly overhaul is required to migrate to another system. This dependency aligns perfectly with the goals of proprietary vendors, keeping organizations tied to one source indefinitely.

The Advantages of Open Architecture Solutions

Open architecture solutions offer a range of benefits that boost security, flexibility, and efficiency. Companies like Mercury Security, HID Aero, and Axis provide open hardware platforms that are interoperable and supported by numerous technology partners. Choosing an open architecture approach means futureproofing your hardware investment, allowing for a flexible transition across providers without needing a complete system replacement.

For example, Mercury Security has the world’s largest access control hardware base, supported by over 20 OEMs. This extensive adoption enables users to switch to another Mercury OEM if the current solution is insufficient, preserving the existing hardware infrastructure and avoiding significant costs.

Five Reasons to Choose Open Architecture

1.   Interoperability and Integration: Open architecture supports seamless integration across various hardware and software, enabling vendor independence, smooth communication between platforms, and easy customization to meet unique security needs.

2.   Scalability and Flexibility: Open architecture systems are scalable and flexible, allowing for expansion and adaptability. Incremental upgrades are possible without major overhauls, reducing costs and supporting long-term system value.

3.   Cost-Effectiveness: Open architecture reduces expenses tied to proprietary systems, such as costly upgrades and vendor-specific maintenance. By supporting partial upgrades and enabling competitive pricing, it provides short- and long-term savings.

4.   Enhanced Security: Open systems allow organizations to implement the latest security protocols and quickly respond to emerging threats. They also support compliance with industry standards, ensuring a resilient and compliant security environment.

5.   Future-Proofing: Open architecture preserves initial hardware investments by allowing integration of new technologies through standard protocols. This approach ensures long-term relevance, efficiency, and cost savings.

Proprietary Private Brand Hardware Common

Notice not all platforms use or are compatible with third party panels.

For example, major providers like Tyco's Software House use proprietary controllers, which differ and are not compatible with other Tyco access products like the distribution access line Kantech that uses its own proprietary panels.

Startups like Openpath and Proxy sell 3rd-party compatible mobile readers, but also are available in versions that use their own proprietary controller boards/relays in a standalone management software.

Access ONVIF Not A Factor

When it comes to interoperability standards, access control is significantly less accepting of standards like ONVIF and no 3rd party standard is widely adopted.

As noted in Access Control Does Not Want ONVIF, despite being so readily adopted by video platforms, both ONVIF interoperability standards, Profile A and Profile C have weak adoption with support from only two vendors:

Three Common Takeover Exceptions

While generally possible, 'takeovers', where controllers associated with one platform are switched to another, have exceptions.

The three common factors that complicate system takeovers and controller interoperability are:

·        Unsupported Features/Integrations

·        New Licensing/OEM Mask Codes

·        Voided Warranty or Support

Unsupported Features/Integrations

First, in terms of existing system integrations and features, just because another system supports the same controller hardware, there is no certainty a new platform supports the same range of features and integrations. Individual features, like OSDP or event cross-linking may be supported at the panel in one system, but not the other.

New Licensing/OEM Mask Codes

Another pitfall, as noted in Does Lenel Support Unbranded Mercury Security Hardware? is some platforms may observe a 'Product OEM Mask' that codes hardware to a specific brand.

The codes are not always observed and not all 3rd party vendors have them in place, but adding existing hardware to a new system can be blocked and potentially require additional licensing fees or risk being refused by the new vendor.

In other cases, like Honeywell Prowatch, physically changing chips on the controller board may be required.

Voided Warranty or Support

Finally, vendors may choose to not 'tech support' taken-over devices, nor do they typically warranty them when something goes wrong.

Thanks to Mr. Brian Rhodes, IPVM writer.


Sunday, January 15, 2023

Network Video Recorder cum Network Switch

Network Video Recorder "Built-in" Network Switch 

The introduction of a Network Video Recorder (NVR) with a built in network switch confused a good portion of the professional market.  It very much seemed to be something that was geared towards catering to a side of the market that was completely unfamiliar with how an IP camera system is setup and installed.   Not a lot has changed since their original release dates.  Most installers still scratch their heads at the thought of using them, but the fact remains that there is an audience.  For those who aren't looking to educate/teach themselves the way of "proper IP installation," these simple to adapt to NVRs are very appealing.  Having said that, it's equally important to understand what you're getting yourself into with a built in switch.

Cost Comparison

There are two ways to look at cost, but we're going to start with your initial purchase for getting this system up and running.  There's no way to conceal the fact that purchasing an NVR with a built in switch is going to be cheaper.  A standard NVR purchased together with a dedicated PoE switch will probably cost you about 25% more than the alternative.  Because of the somewhat basic nature of network switches, you probably won't notice any difference in performance between the two options.  It really comes down to quality in this case, and you're just going to pay more money for the more proven brands; your built in switches are generally built by an unnamed Chinese manufacturer.

The other way to look at cost is to look towards the future.  Network switches are just as imperfect as everything else.  The most common occurrence is that a network port burns out and is no longer able to be used.  If your warranty has expired, you're now in a position where you're going to need to start spending money to get to a solution.  Depending on how much that damaged switch effects your system, you're left with a couple options.  In the case of a dedicated switch, you can replace the switch entirely or you can purchase another smaller switch as an add-on to make up for malfunctioning port(s).  These can be purchased for as little as $50.  An NVR with a built in switch is not going to have such an easy time.  You can try using a dedicated switch as an add-on, but you're now just setting up your system via the alternate method.  If you still have a demand for the same type of "camera hardwired to NVR" setup and your NVR is out of warranty, you'll now find yourself needing to replace the entire NVR instead of the much cheaper network switch.P

Cable Runs

A built in switch is going to require that you run your cable the same way you would with an analog system.  In this scenario, you're going to be running a cable for each camera all the way back to the NVR to create your hardwired connection. Your cable length is limited, in this case, to the standard 328 feet.

A dedicated switch can potentially have some major advantages here. Thinking that a dedicated switch needs to be placed anywhere near your NVR or router would be a mistake.  It makes the most sense to place your switch as close to the biggest cluster of cameras as possible.  This can make for a lot of short cable runs from IP cameras to switch.  From there, it's just a matter of running a single cable from that switch back to your router.  The end result is that you simultaneously put all of your IP cameras on your network by running that one cable.

This is a rough example of what an installation might look like with a dedicated switch.  Of course your own personal hardware situation might be different, but you should get the concept we're going for.  Installing your IP camera system like this will also double the potential distance you can run your cable.  In addition to your cable length being able to be run as far as 328 feet from cameras to switch, you can also run up to another 328 feet from switch to router.  You can revert back to cost as much as you want, but a dedicated switch is going to give you more capabilities and versatility for your money than a built in PoE switch will.

Reliability

This is mostly a matter of opinion and how much you trust individual manufacturers to begin with.  Dedicated switches are usually going to be found with a name brand printed on them.  You've heard of certain brands like Linksys, Netgear, and D-Link because they have an established reputation.  It's not hard to go online and find out how well these companies are performing.  The internet will contain a plethora of reviews and discussions related to these company's products.  This is all to say that transparency is much easier to find with big brands; the general public doesn't let them keep any secrets.  This makes selecting and purchasing a product a very straight forward and simple task; it just takes a bit of research.

There are those among us who are completely against the idea of owning anything that's "unbranded" under the pretense that they believe it's all junk and lacks in longevity.  The fact remains that a good number of the unbranded devices that people have come to feel uncomfortable with are actually performing, and in some cases outperforming, a lot of the big brand names.  If something like this bothers you, you're going to have a hard time feeling comfortable with an NVR that has a built in switch.  The lower costs of these switches makes them attractive but getting passed the uncertainty of knowing whether or not they're going to perform as needed is not as simple.  Researching an NVR with a built in switch can gain you a general public opinion, but those opinions don't usually cover things like speed tests or information regarding longevity of the product.  This is one of those things you'll likely just have to try for yourself in order to know for sure.

All in all, you have good options for both dedicated switches and built in switches. Doing a little bit of homework/research into the product you’re considering should shed enough light on the subject where you can feel confident with your decision either way.

Compatibility

A dedicated switch, no matter who it may be manufacturer by, is compatible with any IP camera from any manufacturer across the board; no questions about it.  A built in switch relies on information it receives from the NVR to determine compatibility.  This can quickly turn into a problem absent any solution.  If you hard wire your IP camera to your built in switch on your NVR and you find that the camera isn't being detected, you're almost guaranteed to be the owner of an NVR and IP cameras that are probably never going to play nicely with each other, and likely not at all.  There is seldom anything you can do to fix a problem like this. On rare occasions, there's a setting that needs to be toggled somewhere, but don't plan on being this lucky.

You can still have compatibility issues with a dedicated switch, but those problems are usually limited to specific features and not the complete inability to bring up the camera whatsoever.  For example, a HikVision IP camera cannot be accessed by a Dahua NVR if you attach that camera to a built in switch on the NVR.  However, if you connect that same camera to a dedicated switch, you'll very easily be able to add that camera to the NVRs device list, but you'll be missing the motion detection feature without a lot of tampering.  We should mention again that any compatibility issues you encounter with a dedicated switch aren't cause by the switch, but by the manufacturers of the cameras and recorders. We are not promote HikVision / Dahua as both “High" level vulnerabilities. No participation in ONVIF committees for both brands. No access to new ONVIF software. Below media statement.


Tuesday, November 15, 2022

CCTV Camera Cable Variations

CCTV Camera Cable Variations

We know that selecting your CCTV cameras and video recorder may have been a little more work than you might have anticipated. We’re sorry to say that the decision making process isn’t over just yet. We can say with confidence that about 90% of tech support related issues are a result of problems with cabling. This makes your choice in cable one of the more important decisions you’re going to make.

Siamese Cable

Siamese cable is really two different cables fused together. You have your coaxial cable (RG59) for video, and power cable. The video portion will serve to relay the video feed from your camera back to your DVR, while the power cable will relay power from your power supply to the camera. Siamese cable is appropriate for any analog, HD-CVI, and HD-SDI security camera system.

This is easily the most popular choice, but there are different levels of quality which can tie into the decision making process. You’ll often see the acronym “AWG” along side of this type of cable. American wire gauge (AWG) is just the unit of measurement that represents the “gauge” or thickness of the wire.

Your standard pre-made Siamese cable will usually be 24AWG or 26 AWG. This is going to seem thin when you hold it in your hand but it’s still very practical. Cable like this is functional for runs up to 150 feet. We don’t recommend going much further than that as you’ll very quickly begin to experience video and/or power loss because of the thinner gauge copper wire. Also, because of it’s thin gauge, pre-made Siamese cable can only be used reliably with standard analog cameras. You will not be able to use this with HD-SDI or HD-CVI cameras.

Pre-made Siamese Cable

The alternative to pre-made is to purchase Siamese cable sold by the spool. This is also commonly referred to as RG59 cable. The coaxial cable that comes off of a spool is normally 20AWG while the power cable is 18AWG. There are two different types of coax in this industry and most of it is copper clad. This means that the center wire is aluminum or silver but cased inside of a copper shell. This type of cable is good for runs up to 300 feet. Some people have been able to push this as far as 400 feet, but usually after 300, you begin to experience video degradation. The other option is solid copper Siamese cable. Unless you have an HD-CVI system, this probably isn’t going to be necessary for you, but you might find that this is a good solution for you if you just need to stretch those 300 foot runs a bit further without video loss.

Siamese Cable from Spool with Various Power and BNC Connectors

Just keep in mind that standard analog and HD-SDI systems are only designed be able to go up to 300 feet. Whether it’s copper clad or solid copper, either one should work just fine for you. Solid copper cable only comes into the picture with HD-CVI systems because there runs can go up to approximately 1600 feet. Without solid copper Siamese cable, you start to experience video degradation pretty early on.

CAT5e Cable

Cat5 and Cat5e are absolutely different no matter what anyone tells you. Ordinary Cat5 cable should not be used with CCTV products. The quality of the cable is too poor for this application and will cause frequent problems if it works at all. If you choose to run this type of cable, it needs to be at least CAT5e (we’ll get to CAT6). You can use this type of cable with standard analog cameras, and it’s required for IP/network cameras.  If you choose to go with Cat5e for your analog cameras, you shouldn't have any issue with runs up to 1000 feet.  If you are using Cat5e with IP cameras that are power over Ethernet (PoE), your cable runs can go as far as 300-1000 feet, while non-PoE cameras will be limited to the power supply being used with them (usually about 300 feet).  The power consumption of your PoE IP camera will ultimately dictate the maximum length of your run but you can usually expect at least 600 feet (12W power consumption).

Analog cameras, as you may have already realized, aren’t really set up for Cat5e cable. The work around for this is to use baluns. Think of baluns like converters that attach to your cameras to make them compatible with Cat5e. There are various types of baluns to choose from depending on your needs.

Network camera, or IP cameras, have a network cable port on their pigtail. Whether the IP camera is power over Ethernet (PoE) or not, the network cable port will be there. You’ll also have a female power terminal on the pigtail very similar to that of any analog or HD camera.

If you have a camera that’s PoE, you can run that single length of Cat5e cable and you’ll have video and power going through the same cable. If your camera is not PoE, you will need a dedicated power source to power the camera. The Cat5e cable will still be good for video, but you’ll most likely need to run a separate power cable in addition to your Cat5e cable unless you have an outlet close enough for the power supply to reach the camera.

The alternative to running two separate cables is to use simple PoE power adapters for non-PoE IP cameras that will essentially convert your non-PoE camera into a PoE camera. They’re identical in purpose to video and power baluns. You’ll still need a dedicated 12V DC power supply for the camera, just like you would any analog camera, but these adapters will enable you to position your power source somewhere much more convenient; for instance, next to your network switch or network video recorder (NVR).

Cat6 Cable

This type of cable is almost never necessary. The fact is that as of right now, there aren’t any IP cameras that require Cat6 cable, but because of the fact that Cat6 is backwards compatible with CAT5e, there is absolutely no harm in using CAT6 or CAT8. Due to the fact that CAT6 is the newer, bigger, and better thing out on the market though, a lot of people choose to go with Cat6 cable in an effort to predict the future in a way. By using CAT6 cable now instead of Cat5e, you may be preventing yourself from having to run new cable later when you upgrade your system. Predictably, cameras will only be getting more advanced and as such will probably require a more advanced cable in the distant future, such as Cat6. Theoretically, Cat6 may be able to lengthen the maximum distance of your runs, but testing for it is so scarce that we wouldn't be able to confirm that with any confidence.

Cat 5 vs Cat 6 vs Cat 8 Ethernet Cables

Designed by integrating cutting-edge technology, the cat 8 cables elevate the performance to the next level. Having a higher bandwidth performance than Cat 5e and Cat 6, Cat 8 cables are the most sought-after ones nowadays.

A comparison of Cat5e, Cat6 and Cat8 Ethernet cables would reveal that cat 8 cables are far more superior than the former two, even though it has a few cons.

Cat8 cables have better frequency characteristics that make them capable of offering higher data speeds than Cat 5e and Cat 6. It can support bandwidth up to 2 GHz for a distance of up to 30 meters. The data speed guaranteed by cat 8 varies from 25 Gbps to 40 Gbps.

On the other hand, Cat 5e Ethernet cables offer a maximum frequency of 100 MHz and Cat 6 supports a max frequency of 250 MHz. The data speed of the Cat 5 cable is limited to 1000 Mbps and that of the Cat 6 Ethernet cable is 10,000 Mbps.

The only major drawback of Cat 8 Ethernet cable is the distance it performs the best. Cat 8 cables are ideal for home installations, LAN in office spaces of small areas etc. Cat 8 Ethernet cables simply assure network speeds from 2500 Mbps to 40,000 Mbps.

The Power of Ethernet or POE is another advantage of using Cat 8 cables. Thereby you can save on cabling expenses at home as well as office. Ideal for space management, reducing clutter, and optimal performance, Cat8 Ethernet cables might be a preferable choice for you.

Twisted Pair Cat 8 Cables

Increased data speed has become a necessity presently. Every minute delay is costing businesses, and individuals offering services their money, time and effort. The electromagnetic field created through the passage of electricity and electromagnetic interference can impede the speed and flawless performance of the network.

Twisted pair cables are a solution used for reducing the effects of the magnetic field. The magnetic field created would be contained in the limited space. Thus high-speed data transmission would occur unaffected.

More twists in the network cabling would provide improved frequency characteristics to the cable. Furthermore, individually shielded pairs of network cables are another method for enhancing frequency.

The categories of cables available in the market presently are:

Cat 5 cables

o   Bandwidth – 100 MHz

o   Data Speed – 100 Mbps

Cat 5e cables

o   Bandwidth – 100 MHz

o   Data Speed – 100 Mbps

Cat 6 cables

o   Bandwidth – 250 MHz

o   Data Speed – 1 Gbps

Cat 6A cables

o   Bandwidth – 500 MHz

o   Data Speed – 10 Gbps

Cat 7 cables

o   Bandwidth – 600 MHz

o   Data Speed – 10 Gbps

Cat 7a cables

o   Bandwidth – 1000 MHz

o   Data Speed – 10+ Gbps

Cat 8 cables

o   Bandwidth – 2500 MHz

o   Data Speed – 40 Gbps

Friday, January 1, 2016

ONVIF and PSIA Standards in Video Surveillance

ONVIF and PSIA Standards in Video Surveillance 

We talk to two of the biggest interface standards organizations in surveillance – ONVIF and PSIA.
ONVIF is a global and open industry forum with the goal to facilitate the development and use of a global open standard for the interface of physical IP-based security products. Or in other words, to create a standard for how IP products within video surveillance and other physical security areas can communicate with each other.

It was officially incorporated as a non-profit, 501(c)6 Delaware corporation on November 25, 2008. ONVIF membership is open to manufacturers, software developers, consultants, system integrators, end-users and other interest groups that wish to participate in the activities of ONVIF. The ONVIF specification aims to achieve interoperability between network video products regardless of manufacturer.

It’s all very well running your security across an IP network, but if your recording device won’t talk to your PTZ camera, you are not going to get very far. Over the last decade, the security industry has spent a lot of time talking up the benefits of IP-based surveillance systems, and end-users have been bombarded with literature and sales pitches on the subject.

It soon become clear in an industry that was raving about the endless opportunities for security on the network that manufactures would have to become a little less proprietary in their dealings with their customers. In short, it was no longer fair to deny end-users the ability to choose whatever camera they wanted and whatever DVR they wanted on their network. They were, after all, used to IT systems that interfaced. It was time for the security industry to realise it had to be more open as well.

Two organizations that have been at the forefront of the drive towards open standards in the industry are ONVIF and PSIA.

ONVIF: Open Network Video Interface Forum

The cornerstones of ONVIF are:
Standardization of communication between network video devices
Interoperability between network video products regardless of manufacturer
Open to all companies and organizations Members

ONVIF was set up in 2008 by Axis, Bosch, and Sony. A non-profit organization, its aims are to create standardization in the industry to aid communication between various vendors’ video devices and then interoperability between those devices and others on the network, regardless of manufacturer. 300 member companies since its founding in 2008. The list of participating members includes major manufacturers like Vivotek, Arecont Vision, and Milestone Systems.

In December 2009 ONVIF’s member base had grown to 127 members. This comprised 14 full members, 15 contributing members and 98 user members. In December 2010, the forum had more than 250 members and more than 600 conformant products on the market.

ONVIF now has 480 members and as of mid-October 2014 has nearly 2040 products that conform to its Profile S specification, which handles video and audio streaming. The total number of products that meet the ONVIF core specification has reached well over 4,000.

In order to be ONVIF conformant, manufacturers use the test tools developed by ONVIF to meet the requirements of its core specification. Only manufacturers whose products have met the requirements of the test tools can submit a test report and a Declaration of Conformity signed by the manufacturer.

The core ONVIF specification, which was launched in November 2008, aimed to define a common protocol for the exchange of data between network video devices. Since then it has extended its scope to include access control products and also has developed specialist profiles for specific categories. The idea behind the profile was to help end-users identify which version of the ONVIF specification the products they were interested in conformed to, making it easier to determine compatibilities between conformant products and specific interoperability features.

There are now three ONVIF profiles, S, G, and C. Profile S looks at the common functionalities of IP video systems, Profile G addresses storage and recording functionalities and Profile C, the integration of IP-based security and safety devices, including access control units. Profile C is expected to be released in early 2014.

Per Bjorkdahl, chair of ONVIF’s steering committee, told us:

The profile concept is a way for end users and systems designers to identify more easily what products will work together without needing an in depth technical knowledge of the specification or having to keep current on each new release.

Profiles group together common sets of features and functionalities, so when two products — for example an IP camera and NVR — both bear the Profile S mark for video and audio streaming, they will work together.

The organisation has been making a concerted effort to broaden its security scope after some criticism that it was too focused on video. Bjorkdahl continues:

From the beginning, ONVIF’s focus was video because we knew we could get the proper feedback from the marketplace and because the need for standards and interoperability on the network video side was so acute. But ONVIF recognized from the start the need for specifications in other industry segments.

Its next area of concentration he says could be new additions in the physical access control area or a new profile for intruder alarms.

The benefits of an open standard for network video should include:
Interoperability – products from various manufacturers can be used in the same systems and “speak the same language”.
Flexibility – end-users and integrators are not locked within proprietary solutions based on technology choices of individual manufacturers.
Future-proof – standards ensure that there are interoperable products on the market, no matter what happens to individual companies.
Quality – when a product conforms to a standard, the market knows what to expect from that product.

ONVIF Specification: 
The ONVIF Core Specification aims to standardize the network interface (on the network layer) of network video products. It defines a network video communication framework based on relevant IETF and Web Services standards including security and IP configuration requirements. The following areas are covered by the Core Specification version 1.0:

IP configuration
Device discovery
Device management
Media configuration
Real time viewing
Event handling
PTZ camera control
Video analytics
Security

ONVIF utilizes IT industry technologies including SOAP, RTP, and Motion JPEG, MPEG-4, and H.264 video codecs. Later releases of the ONVIF specification (version 2.0) also covers storage and additional aspects of analytics.

Drawbacks of ONVIF:
Onvif is a new standard and as such has issues. From our experience there are 2 combining factors contribute to the reliability of an Onvif based CCTV system and they are.
How good a camera manufactures implementation of the Onvif protocol is.
How well VMS manufacturer ensure the quality of the marriage between their implementation of Onvif protocol and each camera manfacturers.
Some IP camera features and enhancements may not be available when using a VMS that exclusively supports the ONVIF standard. To take advantage of some of these features you may need to use the manufacturers own proprietary VMS (Video Management System) application or choose a VMS that supports these enhancements.

The profiles tested were:
Profile S, for IP-based video systems;
Profile C for IP-based access control;
Profile G for edge storage and retrieval as well as the upcoming
Profile Q for improved connectivity.

ONVIF Specification can be downloaded here - http://www.onvif.org/imwp/download.asp?ContentID=18006

ONVIF looks like its mostly a verbose SOAP/ XML based service.
Devices supporting ONVIF advertise this by providing services on a DEVICENAME/onvif url.

Spec details for device management:

Application programmers guide:

Support Documents (onsite)

Complete ONVIF documentation here -

A very good page describing pluses and minuses of ONVIF here -