Showing posts with label SMF. Show all posts
Showing posts with label SMF. Show all posts

Sunday, August 26, 2018

Difference between Optic Modem and Media Converter

Difference between Optic Modem and Media Converter

Fiber Optic Modem
Fiber Optic Modem, also known single-port optic multiplexer, is a point-to-point type terminal equipment which uses a pair of optic fibers to achieve the transmission of E1 or V.35 or 10base-T. Fiber modem has the function of modulation and demodulation. Fiber modem is local network relay transmission equipment, suitable for base station transmission fiber terminal equipment and leased-line equipment.

Fiber modem is similar to the baseband MODEM (digital modem). The only difference from baseband MODEM is that it access fiber line, the optical signal. The multi-ports optic transceiver generally called multiplexer. For multi-port optical multiplexer is normally be directly called “multiplexer”, single-port multiplexer is generally used on the client, similar to commonly used WAN line (circuit) networking with the baseband MODEM, and also named for “fiber modem”, “optical modem”.

Fiber Media Converter
Fiber Media Converter is a simple networking device making the connection between two dissimilar media types become possible. Media converter types range from small standalone devices and PC card converters to high port-density chassis systems that offer many advanced features for network management.

Fiber media converters can connect different local area network (LAN) media, modifying duplex and speed settings. Switching media converters can connect legacy 10BASE-T network segments to more recent 100BASE-TX or 100BASE-FX Fast Ethernet infrastructure. For example, existing half-duplex hubs can be connected to 100BASE-TX Fast Ethernet network segments over 100BASE-FX fiber.
When expanding the reach of the LAN to span multiple locations, media converters are useful in connecting multiple LANs to form one large campus area network that spans over a limited geographic area. As premises networks are primarily copper-based, media converters can extend the reach of the LAN over single-mode fiber up to 160 kilometers with 1550 nm optics.


Wavelength-division multiplexing (WDM) technology in the LAN is especially beneficial in situations where fiber is in limited supply or expensive to provision. As well as conventional dual strand fiber converters, with separate receive and transmit ports, there are also single strand fiber converters, which can extend full-duplex data transmission up to 120 kilometers over one optical fiber.

Other benefits of media conversion include providing a gradual migration path from copper to fiber. Fiber connections can reduce electromagnetic interference. Also fiber media converters pose as a cheap solution for those who want to buy switches for use with fiber but do not have the funds to afford them, they can buy ordinary switches and use fiber media converters to use with their fiber network.

Main Difference between Media Converter And Optical Modem
The difference between the media converter and optical modem is that the media converter is to convert the optical signal in the LAN, simply a signal conversion, no interface protocol conversion. While, fiber modem for WAN is the optical signal conversion and interface protocol conversion, protocol converter has two types of E1 to V.35 and E1 to Ethernet.

In fact, as the developing of network technology, the concept of media converter and fiber modem has become increasingly blurred, which are basically can be unified for the same equipment. Media converter becomes the scientific name of fiber modem.


Few things need to know, There are two primary types of fiber optic cable, single mode fiber (SMF) and multimode fiber (MMF). The former has a very thin core about 5-10 microns in diameter, which is about 10 percent of the latter. Generally, single-mode optical fibers used in telecommunications operate at 1310nm or 1550nm wavelength while multimode fiber at 850nm and 1300nm. However, sometimes, the subdivision of the two types is different due to various fiber optic cable manufacturers. single mode optical fiber cable is used for longer distances such as 100km compared with multimode fiber under 2km due to the smaller diameter of the fiber core. Therefore, single mode optical fibers are typically used outside between buildings in cable TV, internet, and telephone signals transmission while multimode fibers are used within buildings in backbone applications such as computer network linking.

Normally, fiber optic cable speed rates at 10 Gbps, 40 Gbps and even 100 Gbps.
Generally, one fiber optic cable is made up of incredibly thin strands of glass or plastic known as optical fibers (called “core”) surrounded by an insulated casing (called “cladding). Each strand is a little thicker than a human hair and can carry much data like 25,000 telephone calls. Therefore, an entire fiber optic cable can easily carry as much data as you can imagine.