Friday, April 15, 2022

Integrating access control and fire detection

Integrating Access Control and Fire Detection

Most fire jurisdictions require that all doors are automatically unlocked during a fire alarm emergency to ensure a fast exit for those inside the building and a fast entry for the firefighters to do their job. This means the door locking methods (typically electric strikes or electro-magnetic locks)—that are powered and controlled by an Access Control Unit (ACU)—must be kept unlocked during a fire alarm emergency. Fire relay is key product to execute this operation.

What is a fire relay or Output Module?

A output module or control module or fire relay is a switch that sits between the fire system control panel and the power source to the door locking methods. While there are different types of fire relays and different ways to configure them, the job of a fire relay is simple: when there’s a fire alarm, the fire relay unlocks the selected doors.

In an access control system, the fire relay is typically installed inside or near the ACU, and connects the ACU to the fire alarm control panel—as shown in this diagram. Any brand Access Control System can be integrate with Fire, some brand have dedicated port on controller, someone not. You need to verify before getting order. Below arrangement we have test in our experience centre.

Installing a fire relay can be expensive. Follow these tips to get the best pricing.

Lack of a fire relay is one of the most common and expensive surprises we see during customer site surveys. If you’re working with an existing building fire system and it doesn’t already provide a fire relay, you’ll need to get a quote from your building’s fire system provider to install one. 

Unfortunately, the cost of installing a new fire relay can vary significantly. We’ve seen fire relay quotes ranging from Rs. 4000 to Rs. 8000, but there are ways to negotiate for the best pricing. It’s best to include a fire relay as part of your lease agreement with your building management company. If that’s not an option, ask them to negotiate for a fire relay with the building fire system provider on your behalf. Your building management company will likely get better pricing.

If you are building out a new space, you can make a fire relay a part of the general contractor bid so it’s included in the fire alarm system design. Similar to the building management company, your general contractor who is in a position to give repeat business to the fire system provider is more likely to obtain better pricing. Before ordering verify contractor confidence and related document.

Each every manufacture has this module or relay to operate 3rd party equipment Like: Access Control, PA system, Fire Damper, Smoke Damper, AHU etc. If you have Edwards Fire Panel, then only Edwards’s module will be work with proper programming same as Notifier, ESSER, Autronica, GST, Gent any addressable fire brand. If you are not confirm lets contacts us we will guide you free of cost.

The control outputs from a fire alarm control unit can also be sent out on a signaling line circuit (SLC) to an addressable output module, which can open or close a contact based on information sent from the fire alarm control unit on the SLC to the COMM terminals. This is beneficial because multiple output modules can be controlled by the same SLC, which can control each module separately. For example, all output modules controlling all of the door hold opens in a building could be on the same SLC, but based on the specific input to the control unit, only specific doors can be closed. If all of these modules were on the same control circuit, the control unit would only be able to close all the doors.


Friday, April 1, 2022

Video Surveillance in Parking Lots

Video Surveillance in Parking Lots a short Note 

Parking lots can benefit greatly from the security provided by Video Surveillance. Did you know that 80% of crimes at offices, malls and other retail outlets take place in the parking lot? Parking lots have unique security needs – with risks for both owner and customer. A comprehensive video security system can help protect both your property and your customers, helping your business remain competitive and your customers satisfied.

Benefits of Installing CCTV in Parking Garage:

Prevent theft – Many thieves see parking lots as potential gold mines – miles and miles of cars or personal property that they can take. Visible security cameras can help deter thieves from breaking into cars on your lot, and can help aid law enforcement in identifying criminals who do rob cars on your lot. Cameras can also help prevent theft of store property – shopping carts, outdoor displays, tables and chairs, landscaping, etc.

Improve image – Customers are undoubtedly the most essential aspect of many businesses. Keeping your customers happy and giving them a sense of safety and peace of mind when they're shopping at your business establishes a sense of trust and loyalty.

Liability issues It's inevitable that an accident will happen in your parking lot. Whether it's a car crash, a slip, or an errant shopping cart denting cars, video surveillance is an easy way to avoid costly liability cases.

Remote monitoring – Advances in security camera technology have made it easy to check up on your parking lot security cameras at any time of day, from anywhere in the world. A system of IP Cameras managed by a NVR (Network DVR or Network Video Recorder) transmits your footage over the internet so you're never far away. This technology gives you the power to act quickly on security issues from anywhere.


Saturday, March 12, 2022

AI in building automation and HVAC

 AI in Building Automation & HVAC

The today world technology keeps moving on an exponential growth rate and not in linear, whereas artificial intelligence started footprinting on all industry it possible before we proceed further how artificial intelligence used in building automation?

let us go through some basics of artificial intelligence terms.

What is Artificial Intelligence(AI)?

·       AI branch of computer science dealing with the simulation of intelligent behaviour in computers.

·       AI or artificial intelligence helps machines to learn from experiences (otherwise called as machine learning) and adjust to new inputs and work as a human.

·       Almost all technology giant  companies like Google, Microsoft, Amazon started involving AI concepts in their services for examples,

Google translate uses AI, where translating techniques keeps an updating/learned/suggested to google machines to give better accuracy.

Google Assitant uses AI, where it used to assist the user needs based on natural voice by processing various AI algorithm to detect the user’s voice and predict the better result.

Amazon and other e-commerce website are providing recommended products based on the user experience -behind this concept, it is not implemented with the only pre-defined program but also used various AI algorithms to predict the user recommended products with high accuracy which help them bring million of revenues for e-commerce owner.

What is Machine Learning?

·       Machine learning is technically a branch of Artificial intelligence which is limited to or more specific than the overall concept of artificial intelligence. Machine learning is an idea for machines to collect a set of data to process and learn with an advanced algorithm to predict the better output.

·       otherwise, we can say machine learning is capable of changing the program themselves.

What is Deep Learning?

·       Deep learning is a subset of machine learning.

·       Deep learning is related to deep artificial neural networks which are set of an algorithm that has a new set of record in accuracy for many complex problems.

Above terms and definition are just basic about artificial intelligence and proceed with a further post to understand how artificial intelligence service of software used in building automation.

let us discuss Roby and Brainbox AI about how it is used in building automation and saving more energy on buildings.

How Artificial intelligence used in Building automation system

With the help of artificial intelligence, Machine learning, deep learning and cloud technology concept, AI service provider creating best and various algorithm by HVAC and building automation experts and same implemented with the existing system installed in buildings.

Note that building already has a centralised and specific system with dedicated hardware and software to monitor and control the equipment as per the requirement.

Existing BMS system generates and stores tons of data of connected equipment in the building

·       TrendLog- log/store the various sensors data connected in buildings with configured over a period of time.

·       Events-Log the information about on and off state of all equipment.

·       Alarms- generate an alarm if any fault identified in connected equipment.

AI role is here to collect the data from the BMS System, process it and instructs your existing HVAC system on how to operate more intelligently and efficiently.

Let us see some AI tools used in Building automation 

·        Roby

·        Brainbox AI

What is Roby?

Roby is a chat/voice-enabled software with AI concept that handles all requests, automate repetitive tasks, eliminates miscommunication, and reduces resolution time to increase employee satisfaction.

·       Simplify ticketing management-Roby unifies all channels for making requests to a single interface for employees.

·       Keep employees engaged-Roby keeps employees updated on their requests and encourages interactions.

·       Understand the office inside and out-Roby periodically initiates employee surveys and indicate potential problems based on responses.

·       Deflect repetitive question-Roby learns from employees’ feedback and automatically deflect repetitive questions.

How Roby Helps Your Office Management

·       Managing Varied Requests-There is many ways to make a request, and it is difficult to keep eyes on multiple channels.

·       Answering Repetitive Questions-In a dynamic environment, it is difficult to maintain a knowledge base for so many questions.

·       Keeping Employees Involved-Sometimes, the conversation gap between employees and support team can cause miscommunication.

·        Getting Feedback from Employees-Companies usually use professional service to do employee surveys, but this wastes time and money.

How does Roby work?

Employees simply send all requests to Roby

·       Using “/Roby” or click a button, employees can easily send a request to support teams and check statuses anytime.

·       Roby automatically creates a to-do list for the support team and keeps employees notified

The support team can stay focused on their tasks and not worry about being continually distracted. Simply type “request”, Roby will show a to-do list and keep everyone updated.

·        Roby can learn the Q&A and automatically answer repetitive questions

·        Employees can ask a question to support teams through Roby. Roby will memorize the Q&A and directly answer it next time when the same question is asked

·       Roby drives the interactions between employees and the support team

Every two weeks, Roby will send simple metrics to employees to keep track of the effort from the support team and get their valuable feedback.

·       Get valuable insights into your office space

·       The feedback and survey results are displayed in the Roby Portal. The support team will be able to access and better understand how to improve employee satisfaction.

Roby is not limited only with above features but also add-on with existing building automation

·       HVAC Add-on: Control the temperature of workspaces at any time, and have preferences automatically applied in the future.

·       Lighting Add-on: Adjust the lighting in any workspace and create schedules to maximize energy use efficiency.

·       Support Ticketing Add-on: Submit support tickets- anytime, anywhere, and get immediate responses with automatic notifications, 24/7.

·       Calendar Add-on: Book meeting rooms on the fly, see which rooms are available, and ensure that unused room is automatically opened for assignment.

Key Benefits of using Roby for building automation

·       Convenient, Easy to Use. Integrates into existing employee communication platforms, allowing employees to easily submit requests. Natural language processing makes submitting a request simple.

·       Communications.  Roby keeps the requestor informed with status updates and resolution notification.  Operators can make broadcast announcements

·       Time Savings. Automated execution of HVAC tasks, elimination of duplicate tickets, and intelligent communication free up Operators to focus on higher value activities. done!

·       Speed. Temperature change requests completed in real-time without human intervention, even after hours.

·       Cost Savings. AI continuously optimizes HVAC operations, resulting in reduced heating and cooling costs without sacrificing employee comfort.

·       Predictive. Roby continuously learns users’ needs and takes proactive actions to optimize the office environment and replenish office supplies.

·       Satisfaction and Productivity. Comfortable employees are happier and get more done!

What is BrainBox AI?

Brainbox AI using technology to the implementation of optimizing in energy consumption of building which is one of the largest contributors of climate-changing in this world.

·       Brainbox AI engine supports a self-operating building that requires no human intervention.

·       Using deep learning, cloud-based computing, and our proprietary process, our solution autonomously optimizes existing Heating, Ventilation, and Air Conditioning (HVAC) control systems for maximum impact on energy consumption.

Brainbox AI helps to

·       25-35% of reduction in total energy costs.

·       60% improvement in occupant comfort.

·       20-40% decrease in carbon footprint.

·       3-month payback and low CAPEX

How BrainBox Implemented and works to save energy in Buildings

STEP 1: GETTING ACQUAINTED

·       Our solution identifies and catalogues your building’s specific operating behaviour and energy flow by gathering data from both internal and external sources. It then creates a building energy profile for making informed predictions about future energy flow.

·       BrainBox AI collects hundreds of thousands of real-time data points, such as outside temperature, sun/cloud positioning, fan speed, duct pressure, heater status, humidity levels, occupant density and many more.

 STEP 2: OPTIMIZING FLOW

·       Using over 25 customized algorithms working in real time, our AI engine instructs your existing HVAC system on how to operate more intelligently and efficiently.

·       This process is similar to an aircraft on auto-pilot.

 STEP 3: CONTINUOUS IMPROVEMENT

it continually amalgamates and analyzes all generated data to further optimize operational efficiency and discover other unique insights.

To improve operational efficiency, BrainBox AI works to answer questions, including:

·       Which HVAC units have the fewest mechanical issues?

·       How are changes in occupancy levels affecting energy consumption?

·       Which HVAC units are the most energy efficient in cold or humid climates?

Bottom Line – This AI technology services and tools for buildings will have much impact on facility management in the near future.

Learn more about artificial technology on

·        UNDERSTANDING ENERGY EFFICIENCY AS A DYNAMIC RESOURCE IN THE BUILT ENVIRONMENT

Note: Original content published on https://www.brainboxai.ai/ and https://tellroby.com/


Tuesday, March 1, 2022

Comparison Metrics for Intrusion Panels

 Comparison Metrics for Intrusion Panels

In this note, we reviews fundamental features and attributes for evaluating and comparing intrusion alarm panels.  These criteria are:

·        Number of Hardwired Zones

·        Number of Wireless Zones

·        Number of Keypads Supported

·        Multiple User Codes Supported

·        IP Programming and Control

·        Advanced Features

·        System Expandability

·        Video/Access/Fire Integration

·        Dealer Only

·        Installation & Commissioning

Inside we define and describe each of these criteria.

Comparison Chart

The ability to condense the 10 points into a standard format is critical for comparing systems to each other. Conceptually, these factors form a graphic like this example:

For quick 'executive summary' level comparison, a chart is useful. However, our standard report method includes detailed descriptions of each of those 10 points. In the sections below, we describe in detail each category.

Number of Hardwired Zones

How many areas a panel can monitor is a core feature. Keeping track of number of sensors is too simplistic and not always helpful.  Many sensors can often be connected in series, for example in a bank of windows several sensors may be wired together in a chain and connected to the panel in one circuit. If one contact opens, the entire zone the circuit is connected to alarms with no specific indication of which sensor is reporting trouble.  

However, granularity can be achieved when zones are associated with one or a small number of sensors in an building's area. In this way, comparing number of zones is a useful metric.

Number of Wireless Zones

Not all panels or systems support wireless sensors.  Moreover, some panels may only support wireless with optional equipment or in one specific zone. As with hardwired, comparing wireless zones is the standard attribute.

Number and Type of Keypads Supported

For many systems, the type and ability to have multiple input keypads is a major consideration.  While most alarm systems support one installed keypad, the location where it is installed may be inconvenient for quick access by users in all protected areas. Also, the utility of a basic alpha-numeric pad cannot be compared to a full graphic touchscreen that may display or even sound more descriptive messages or be integrated with other systems like video surveillance.

Multiple User Codes Supported

Akin (সদৃশ) to key control or access control, 'user codes' should be assigned to and may be provisioned differently for individual users. Basic alarm systems may support 20 user codes and be more than enough for a typical residential install, but that number may be too limited or small for small commercial use.

Likewise, each code may carry different privileges, from a 'master' configured to do anything, to a 'temporary' that may expire after one use that is only valid for a specific range of hours.

IP Programming and Control

Not all panels have a web or network interface for notification, control, or programming from a networked device.  While this may not be a major dealbreaker for a simple user, the expectation of easy programming, use, and integration often depend on this feature.

Noting the options and type of IP connectivity is key for modern systems, but many systems lack it or require additional parts to make it happen. This category also indicates the usefulness and/or cost app-based or remote access controls.

Advanced Features

Comparing additional non-essential, but still valuable, attributes of individual systems is key. For example, 'line supervision', or the ability to detect weather sensors on a circuit are tampered with, is not often a major consideration in residential or even small commercial systems, but is often critical in high-security applications. Likewise, noting how many events can be logged into panel memory may make a big difference in some designs but not all.

System Expandability

The maximum number of zones a system supports often require additional hardware or modules to achieve that what is available by default on a stock panel. Additionally, the supported number is often different than the individual number of hardwired zones plus wireless zones available from expansion hardware.

In other cases, hardware zone expanders may physically support connecting hundred of zones, while the underlying panel only supports a fraction of that number. Noting 'expandability' clears up potential confusion.

Video/Access/Fire Integration

In terms of tying other systems into the intrusion system, the variation and ability of supported systems is substantial. Some systems support basic access control or video surveillance camera integration by default, while others require additional hardware or software for proprietary devices. Others may not support any integration at all.  Understanding the options are important comparison factors.

Dealer Only

Understanding the availability, support, and pricing structure behind a platform is another key information point.  Many alarm products are not available via distribution, and understanding this point often is a factor is weighing buying and support options.

Installation & Commissioning

Check installation team shouldn’t hide any password, must now share installed sensor details with others. Select professional and they must invite you to put password and user-id creation. They must trained you in easy way and handover all document related product and there company details for telephonic support. 

If you still aren't sure how you manage your building / establishment/ Shop Burgler alarm system or Intrusion Alarm System, feel free to get in touch with one of our experts via ssaintegrate@gmail.com. Before selecting vendor / installer check and verify they are authorized or not to execute your Burglar or Intrusion Alarm system work. It’s suggested Burglar alarm or Intrusion Detection & Alarm System commissioned by certified professional.


Monday, February 14, 2022

Codes Apply for Electromagnetic Locks

Codes Apply for Electromagnetic Locks

An electromagnetic lock (EM Lock) is essentially an electromagnet in a housing mounted on the door frame, and a steel armature mounted on the door wing. When the magnet is energized, it bonds to the armature and locks the door. To allow access or egress, a switch must be provided to de-energize the electromagnet. It can be difficult to determine which set of code requirements to follow. However, code compliance is crucial when this product is used in an access- or egress-control system. Unlike most locks, electromagnetic locks typically require external release devices such as motion sensors or request-to-exit switches to allow building occupants to exit. In addition, secondary means of releasing the mag-lock are often mandated by the codes, and the requirements vary depending on the type of locking system used.

Prior to the 2009 edition of the International Building Code (IBC), the set of code requirements typically used for doors equipped with electromagnetic locks was the section called Access-Controlled Egress Doors. The 2009 edition added a second set of requirements that could be used, called Electromagnetically Locked Egress Doors. Either of these two sets of requirements can now be used, depending on the application.

The basic difference between these two sections is that the original section, Access-Controlled Egress Doors, required a sensor and push button as release devices, while the new section, Electromagnetically Locked Egress Doors, allows a door-mounted release device instead. This could be panic hardware or a latchset with a request-to-exit (RX) switch, or a bar with an electronic touch sensor.

A building could have several AHJs (Authorities Having Jurisdiction), and more than one code may be enforced for a particular project. The most commonly used model codes in the U.S. are the International Building Code (IBC), the International Fire Code (IFC), and NFPA 101 – The Life Safety Code, but state and local codes sometimes include modifications that affect the use of electrified hardware. It’s usually best to follow the most stringent set of requirements that have been adopted in the project’s jurisdiction.

Here is a summary of the requirements for both sections from the 2009 IBC:

1008.1.4.4 Access-Controlled Egress Doors

·        Applies to entrance doors in a means of egress and entrance doors to tenant spaces.

·        Allowed in Use Groups - A (Assembly), B (Business), E (Educational), I-2 (Institutional - Hospitals & Nursing Homes), M (Mercantile), R-1 (Residential - Hotels, Motels, & Boarding Houses), and R-2 (Residential - Apartments & Dormitories).

·        A sensor must be mounted on the egress side to detect an occupant approaching the doors. Doors must unlock upon a signal from the sensor or loss of power to the sensor.

·        Loss of power to the lock must unlock the doors.

·        A manual unlocking device (push button) shall result in direct interruption of power to the lock – independent of the access control system electronics. When the push button is actuated, the doors must remain unlocked for 30 seconds minimum. The push button must include signage stating “Push to Exit” and must be located 40” to 48” vertically above the floor and within 5’ of the doors. Ready access must be provided to the push button.

·        If the building has a fire alarm/sprinkler system/fire detection system, activation of the system must automatically unlock the doors. Doors must remain unlocked until the system has been reset.

·        Entrance doors in buildings with an occupancy in Group A, B, E or M shall not be secured from the egress side during periods that the building is open to the general public.

1008.1.9.8 Electromagnetically Locked Egress Doors

·         Applies to doors in a means of egress and doors to tenant spaces. The 2009 IBC includes a limitation to doors “not otherwise required to have panic hardware,” which was removed in the 2012 edition.

·        Allowed in Use Groups - A (Assembly), B (Business), E (Educational), M (Mercantile), R-1 (Residential - Hotels, Motels, & Boarding Houses), and R-2 (Residential - Apartments & Dormitories).

·          The door must be equipped with listed hardware mounted on the door leaf, which incorporates a built-in switch to directly release the electromagnetic lock and unlock the door immediately.

·         The release device must have an obvious method of operation, and must be readily operated with one hand under all lighting conditions.

·            Loss of power to the listed hardware must automatically unlock the door.

·          When the new section was added to the 2009 IBC, the technical committee made a change to the proposed language which caused some confusion. A limitation to doors that are “not otherwise required to have panic hardware” was included in the 2009 edition, but it appears that this was not the intent. The limitation was removed and the intent clarified in the 2012 edition of the IBC, and as long as the switch in the panic bar releases the mag-lock, a door required to have panic hardware can be equipped with a mag-lock.

·        With the addition of Section 1008.1.9.8 – Electromagnetically Locked Egress Doors, the door-mounted release device can be used instead of the sensor and emergency push button. Note that this section does not require the mag-lock to release upon activation of the fire alarm or sprinkler system when a door-mounted release device is used. But there are a few issues that are still unclear, even with the 2012 changes.

·           The door must unlock upon loss of power to the “listed hardware,” which in this case is the door-mounted release device. Loss of power to some types of request-to-exit switches will not unlock the mag-lock. We may see a future change to the language so that loss of power to the electromagnetic lock is required to unlock the door, but the code currently addresses the release device.

·        I-2 occupancies (Institutional – Hospitals & Nursing Homes) are not included as acceptable locations for electromagnetically locked egress doors. This use group was added to the Access-Controlled Egress Doors section in the 2009 edition of the IBC, so hopefully the new section will catch up and include the I-2 use group in the future.

·        UL 305, the UL Standard for Panic Hardware, doesn’t address the use of panic hardware to release an electromagnetic lock. There is also a section of the IBC which states that certain doors shall not be equipped with a latch or lock unless it’s panic hardware. This should be changed to reflect the use of a mag-lock released by panic hardware.

The following summaries address each type of system where a mag-lock might be used, and the related model code requirements:

Sensor Release: A sensor automatically unlocks the electromagnetic lock to allow egress.

This is the most common type of system where electromagnetic locks are used. In past editions of the model codes, the applicable section referred to “access-controlled egress doors” which often gave the impression that the requirements applied to all doors with an access control system. A typical access control system which controls access but utilizes a lever handle or panic hardware to allow free egress is not required to comply with this section. The intent is for this section to apply only to electrified locks that are released by a sensor, and the title of this section has been changed in the model codes to clarify the intent.

For these systems, a sensor on the egress side of the door opening must detect an approaching occupant and unlock the door. The door must also unlock upon loss of power to the sensor or locking system, upon activation of the building fire alarm or automatic sprinkler system (until manually reset), and upon actuation of an auxiliary switch – typically a push button. This switch must be located 40-48 inches above the floor and within 5 feet of the door, must be readily accessible, and must be marked “PUSH TO EXIT.” Pushing the button must directly interrupt power to the lock, independent of the other electronics, and the door must remain unlocked for at least 30 seconds.

Recent editions of the IBC/IFC and NFPA 101 include virtually identical egress requirements for these systems, and all of these model codes currently require the UL 294 listing for these applications. It’s important to note that when this type of system is installed on a door that is required by code to have panic hardware, the panic hardware is required in addition to the electromagnetic lock.

Door-Hardware Release: A switch in the door-mounted hardware releases the electromagnetic lock to allow egress.

This type of system typically utilizes a request-to-exit (RX or REX) switch in the lever handle, panic hardware, or sensor bar mounted on the door. Again, the requirements of the IBC/IFC and NFPA 101 are very similar. The model codes require the hardware mounted on the door to have an obvious method of operation, and to be readily operable with one hand and under all lighting conditions. Operation of this door-mounted hardware must directly interrupt power to the electromagnetic lock, and the door must unlock immediately. The door must also unlock upon loss of power to the locking system, and the UL 294 listing is required by the current model codes. Note that this section does not require an auxiliary push button beside the door, or for the door to unlock upon activation of the fire protection system, although some local codes or AHJs may mandate these additional safety overrides.

Delayed Egress: Doors are locked to delay egress for 15 seconds under normal operation but allow immediate egress during an emergency.

There are two types of egress:

·        Free means that someone can exit an egress door without any delay by using only a single motion, such as turning a lever or pushing on a panic bar.

·        Delayed means that there’s a timed delay before someone can pass through the egress door and exit. Typically, this delay is 15 seconds.

Delayed egress is used to:

·        Discourage casual use of certain doors, so pedestrians can’t leave a premises or steal merchandise.

·        Deter elopement of patients, children or inmates from a protected area of a facility.

·        Make possible access control in both directions through selected openings.

Often, delayed egress systems include panic hardware with delayed egress circuitry, but electromagnetic locks are also available with this function. The lock includes an integral timer which allows the door to be opened 15 seconds after an attempt to exit is made – or 30 seconds when approved by the AHJ. The activation switch may be part of the mag-lock, or the timer may be initiated by an external RX switch.

To ensure free egress in an emergency, delayed egress locks must unlock immediately (no 15-second delay) upon activation of the fire protection system or sprinkler system, and upon loss of power. The capability of allowing immediate egress by a switch at the fire command center or other location may also be required.

Under normal operation, the delayed egress lock prevents egress until a force of 15 pounds, maximum, is applied for not more than 3 seconds; an audible alarm will sound in the vicinity of the door, and in 15 seconds the door will unlock to allow egress. After the device has been released by an attempt to exit, it must be rearmed manually - current codes do not allow delayed egress locks to rearm automatically.

Doors with delayed egress locks must also include signage stating, “PUSH UNTIL ALARM SOUNDS. DOOR CAN BE OPENED IN 15 SECONDS.” When a delayed egress lock is installed on an inswinging door, or when an AHJ approves a 30-second time delay, the signage must reflect the applicable operation. Specific requirements for the signage can be found in the model codes, and current codes also require the UL 294 listing for delayed egress locking systems.

The model codes include some additional limitations based on the use group or occupancy classification. For example, past editions of the IBC/IFC prohibited the use of delayed egress locks in assembly, educational, and high hazard occupancies, but the 2018 editions include exceptions for doors serving classrooms with an occupant load of less than 50 people, and for secondary exits from courtrooms. Delayed egress locks are allowed in those locations when the jurisdiction has adopted the 2018 edition of the model code, or when approve by the AHJ.

Controlled Egress: In health care facilities where patients require containment for their safety or security, doors may be locked in the direction of egress under normal operation but must allow emergency egress.

The IBC and IFC allow this application to be used in some health care units in hospitals, nursing homes, and other Group I-1 and I-2 facilities. These units might include memory care, maternity, pediatrics, or other areas approved by the AHJ. NFPA 101 includes these requirements in the chapters that cover new and existing health care facilities, and the code allows the doors to be locked where patients’ special needs require specialized protective measures for their safety or security.

According to the IBC and IFC, the building must have an automatic sprinkler system or automatic fire detection system, and activation of these systems must unlock the doors to allow egress. Loss of power must also automatically unlock the controlled egress doors, as well as a switch that directly breaks power to the lock - located at the fire command center, nurses station, or other approved location. A building occupant must not be required to pass through more than one door equipped with a controlled egress lock before entering an exit. The automatic-release requirements listed here do not apply to areas used for psychiatric treatment, or hospital units where listed infant abduction systems are installed.

All clinical staff members must have the ability – including keys or credentials – to unlock the doors for emergency egress, and these procedures must be included in the facility’s emergency plan. Training and drills are crucial in order for staff to be familiar with the egress protocols. Systems used for controlled egress must be listed to UL 294, and emergency lighting must be present at doors equipped with these locks. The requirements of NFPA 101 would not change the type of locks used in these systems (fail safe electrified locks), but the Life Safety Code does include slight variations to the required safety systems and procedures.

Stairwell Reentry: Stairway access doors may be locked on the stair side but must unlock to allow building occupants to leave the stairwell if it becomes compromised during a fire.

The IBC and IFC require all stairwell doors that are lockable on the stair side to have electrified locks that can be remotely released by a switch at the fire command center, or other approved location. (Note: Stair discharge doors may be locked to prevent access to the stairwell but must allow free egress.) For high-rise buildings, the IBC and IFC require the stairwell to be equipped with a two-way communication system if doors are electrically locked. Consult the IBC/IFC for exceptions related to buildings with a single exit stair.

The NFPA 101 requirements for stairwell reentry differ from the IBC and IFC, so it’s very important to refer to the adopted code to verify what is required. For example, NFPA 101 allows doors to be mechanically locked on the stair side when serving four stories or less – the IBC and IFC require these doors to be electrically locked, or never locked. NFPA 101 also exempts some occupancies from the reentry requirements, and includes a section detailing the criteria for “selected reentry” – which allows some doors to be mechanically locked and others to allow reentry.

If mag-locks are used on fire-rated stair doors, the door must be equipped with additional latching hardware to maintain the fire rating. In addition, the mag-locks must meet the applicable requirements on the egress side – sensor release, door hardware release, delayed egress, or controlled egress. Fail-safe electrified locks or fail-safe trim for fire exit hardware is commonly used; fail safe electric strikes are not listed for use on fire door assemblies.

Elevator Lobby Egress: Doors secure the elevator lobby and prevent access to the tenant space but must allow emergency egress from the lobby.

Currently, the IBC and IFC require each elevator lobby to have code-compliant egress via at least one exit. This could include direct access from the lobby to an exit stairwell, or free egress from the lobby to a corridor that leads through a tenant space to an exit. This means of egress must not be restricted, except with a delayed egress lock (most occupancy types) or an exit alarm.

NFPA 101 does allow egress through elevator lobby doors to be restricted during normal operation, if the doors allow emergency egress. The application must be allowed by the applicable occupancy chapter. For example, Chapter 11 (Special Structures and High-Rise Buildings) allows elevator lobby exit access doors to be locked “in other than newly constructed high-rise buildings.” Therefore, this application would not be allowed by NFPA 101 in new high-rise buildings.

The building must have a fire alarm and sprinkler system, and the lobby must have a smoke detection system. Activation of any of these systems (except by manual pull stations), or loss of power must automatically unlock the doors to allow egress. The doors must remain unlocked until the system is manually reset.

The elevator lobby must have a two-way communication system connected to a central control point that is constantly staffed by people who can provide emergency assistance. The electrified hardware must be listed to UL 294, and any latch-releasing hardware on the door must comply with the egress requirements of NFPA 101.

Because the IBC and IFC do not include a section similar to NFPA 101 regarding elevator lobby doors, some cities and states have modified the IBC/IFC to allow these doors to be electrically locked. These modifications typically require fail safe locks which unlock automatically upon activation of the fire protection system, as well as communication between the elevator lobby and a security desk or other location.

Security Interlock: Two or more doors are interlocked so that when one door is opened, the other door cannot be opened; commonly used on clean rooms and high-security applications.

Mag-locks are often used in security interlocks, but this application is not currently addressed in the model codes except when related to a prison sallyport. This type of system could impede egress, so each application must be approved by the AHJ, and additional safety features may be required. For example, to avoid entrapment in the room or vestibule, the AHJ may require emergency override switches in both locations, as well as an override switch on the exterior that is controlled by a key or credential. These switches will allow the doors to be unlocked for access or egress if one door is in the open position, preventing the use of the other door. In most security interlocks, the locks are automatically unlocked upon activation of the fire protection system, to allow free egress. Consult the AHJ to determine what is required.

In most cases, only one of these sections will apply to a particular door opening equipped with a mag-lock. The exception would be a stairwell door that must meet the stairwell reentry requirements on the stair side but would have one of the other applications on the egress side. Remember, refer to the applicable model codes and any state or city modifications to determine whether additional limitations apply, and consult the AHJ if more information is needed.

Code Comparisons - Occupancy Classifications

I-Codes. Until the 2018 edition of the IBC, delayed-egress locks were allowed in all use groups except A – assembly, E – educational and H – high hazard. Beginning with the 2018 edition, delayed-egress locks are allowed on the secondary exits that serve courtrooms (typically assembly occupancies) if the building has a sprinkler system. The 2018 edition also allows delayed-egress locks on classroom doors in educational occupancies if the calculated occupant load served by the door is fewer than 50 people. This gives schools an option if they’re looking for a way to prevent elopement of young children or students who have special needs.

NFPA. The NFPA codes are less restrictive and allow delayed-egress locks in areas of low and ordinary hazard contents, although the Life Safety Code includes restrictions depending on the occupancy. For example, delayed-egress locks aren’t permitted on the main entrance or exit doors that serve assembly occupancies, and they also are prohibited on airport jetway doors. Lodging or rooming houses can have only one door that has a delayed-egress lock per escape path, and residential board and care facilities are permitted to have delayed-egress locks only on exterior doors. The other occupancy classifications aren’t subject to similar limitations.

Code Comparisons - Required Fire Protection System

I-Codes & NFPA. Both sets of model codes require buildings that have delayed-egress locks to be equipped throughout with an automatic sprinkler system or approved automatic smoke- or heat-detection system. This requirement allows either type of system, although the change to the 2018 IBC that applies to courtrooms specifically requires a sprinkler system.

Code Comparisons - Activation Time

I-Codes & NFPA. Both sets of model codes require the delayed-egress timer to begin when a force of 15 pounds is applied for no more than 3 seconds. Prior to the 2015 edition of the IBC, the timer was required to begin after someone attempted to exit for 1 second. The activation time required to initiate the 15-second (or 30 second) timer is permitted to be less than 3 seconds, but it can’t be more than 3 seconds.

Code Comparisons - Automatic Release Delay

I-Codes & NFPA. When the timer is activated, the model codes require the delayed-egress lock to release in the direction of egress after 15 seconds; the AHJ might approve a time delay of 30 seconds. After that period, the door will be unlocked in the direction of egress, and another attempt to exit will allow the door to be opened.

Code Comparisons - Rearming After Activation

I-Codes & NFPA. When the timer of a delayed-egress lock is activated and the lock allows egress after 15 (or 30) seconds, the model codes require the lock to be rearmed manually.

Code Comparisons - Audible Alarm

I-Codes & NFPA. Both sets of model codes require an audible alarm to sound when a delayed-egress lock is activated, but the codes don’t mandate a specific type of alarm. Some products incorporate a continuous alarm, while others have an intermittent sound or even a verbal countdown.

Code Comparisons - Signage Requirements

I-Codes. Signage must state "PUSH [PULL] UNTIL ALARM SOUNDS. DOOR CAN BE OPENED IN 15 [30] SECONDS.” These signs are required for doors equipped with delayed-egress locks (see exception for Group I) and must be mounted above and within 12 inches of the door exit hardware. Beginning with the 2015 edition, signage is required to comply with the visual character requirements of ICC A117.1 – Accessible and Usable Buildings and Facilities. In Group I – institutional occupancies, the AHJ may allow signage to be omitted for certain types of treatment areas.

NFPA. The required text for the signage is the same as that required by the I-Codes: “PUSH [PULL] UNTIL ALARM SOUNDS. DOOR CAN BE OPENED IN 15 [30] SECONDS.” The NFPA codes require signage for delayed-egress locks to be readily visible, with letters not less than 1 inch high, a stroke width of one-eighths of an inch and a contrasting background, durable and located on the egress side of the door adjacent to the release device.

Code Comparisons - Action Upon Alarm Activation

I-Codes. When the fire alarm or sprinkler system is activated, delayed-egress locks must allow immediate egress automatically. This ensures that building occupants can exit quickly during a fire.

NFPA. The NFPA codes are more specific regarding the types of system activation that must unlock the delayed-egress locks for emergency egress. These doors must unlock with no delay in the direction of egress upon the activation of a sprinkler system, not more than one heat detector or not more than two smoke detectors.

Code Comparisons - Remote Release

I-Codes. To allow immediate egress when necessary, the I-Codes require delayed-egress locks to be capable of being deactivated by a switch at the fire command center or other approved locations.

NFPA. Remote release isn’t mandated by the section of the Life Safety Code that addresses delayed-egress locks.

Code Comparisons - Action Upon Power Failure

I-Codes & NFPA. When power fails, both sets of codes require delayed-egress locks to unlock immediately in the direction of egress. A common question about delayed-egress locking systems is whether battery backup is allowed in the power supply of the electrified hardware. The model codes don’t address this specifically, so it often is left up to the AHJ to decide whether delayed-egress locks must release upon loss of the main power to the building or continue to delay egress on standby power. However, based on the requirements of NFPA 72 – National Fire Alarm & Signaling Code, I don’t recommend using independent battery backup in the power supply of the delayed-egress lock. If the fire-alarm system and delayed-egress locks are powered by two different standby power systems, the hardware might not interface properly with the fire alarm after the loss of main building power. Using the same standby power source for the fire-alarm system and delayed-egress locks is preferred.

Code Comparisons - Emergency Lighting

I-Codes & NFPA. Emergency lighting is required by both sets of model codes, on the egress side of the door on which a delayed-egress lock has been installed. It’s important to check for the presence of emergency lighting before you install delayed-egress hardware.

Code Comparisons - Quantity of Locks per Egress Path

I-Codes. For most use groups, only one delayed-egress lock is allowed per egress path. This has changed from past editions of the I-Codes, where a building occupant could encounter only one delayed-egress lock before going through an exit. In Group I – institutional occupancies, such as hospitals, nursing homes and day care facilities, the I-Codes allow two doors that have delayed-egress locks per egress path, with a maximum combined delay of 30 seconds. In Group I-1, Condition 1 and Group I-4, the exception permitting two doors that have delayed-egress locks mandates that the building is equipped with a sprinkler system throughout.

NFPA. For most occupancy classifications, the NFPA codes don’t restrict the number of delayed-egress locks per egress path. Only in lodging or rooming houses does the Life Safety Code limit delayed-egress locks to one device per escape path.

Required Listings

I-Codes & NFPA. Both sets of model codes require delayed-egress locking systems to be listed to UL 294 – Standard for Access Control System Units. If a delayed-egress lock will be installed on a fire-door assembly, it also must be listed to UL 10C – Positive Pressure Fire Tests of Door Assemblies or NFPA 252 – Standard Methods of Fire Tests of Door Assemblies. In addition to the other listings, panic hardware that has delayed egress as a feature must be listed to UL 305 – Standard for Panic Hardware (I-Codes & NFPA) and in some cases BHMA A156.3 – Exit Devices (NFPA only).

If you are a system integrator or access automation installer or even a distributor, it is important to know how to select the best code application for access system on behalf of the customer. Majority of the datasheets and catalogues are not really useful unless you already know what you are getting into. If need any further information contact us on ssaintegrate@gmail.com.

Further Reading

For more on codes and delayed-egress locks:

IBC sections for Delayed Egress:

·        2021 – 1010.2.13

·        2018 – 1010.1.9.8

·        2015 – 1010.1.9.7

·        2012 – 1008.1.9.7

·        2009 – 1008.1.9.7

NFPA 101 sections for Delayed Egress Electrical Locking systems:

7.2.1.6.1