Showing posts with label video surveillance. Show all posts
Showing posts with label video surveillance. Show all posts

Tuesday, September 16, 2025

Sensitivity vs Threshold

Sensitivity vs Threshold 

In video surveillance, sensitivity determines the smallest motion a camera can detect, while threshold defines the magnitude of that motion needed to trigger an event. A higher sensitivity setting allows the camera to register even minor movements, whereas a higher threshold makes it harder to trigger an event, requiring a more significant amount of motion to activate the motion detection. You often adjust these together to reduce false alarms from things like light changes while still capturing real events like a person or vehicle.

Sensitivity measures how responsive a system is to a stimulus, while the threshold is the minimum stimulus energy or change required to trigger a response, with sensitivity being the reciprocal of the threshold. In simpler terms, a high sensitivity means a low threshold and the system responds to small or subtle changes, whereas a low sensitivity implies a high threshold, requiring a significant change to elicit a reaction. 

Sensitivity

·        Definition: The ability of a system or person to detect a stimulus or respond to a change.

·        What it is: The ease with which a camera detects motion. 

·        Measurement: It is often defined as the inverse of the threshold. 

·        Function:  A high sensitivity means a system is more responsive and can detect very weak or small signals/changes.

·        How it works: A higher sensitivity value means the camera's motion detection algorithm is more "tuned in" to changes in pixels, allowing it to pick up on smaller or fainter movements.

·        Effect: A high sensitivity can lead to more alerts, as it's more likely to trigger from small, irrelevant movements. 

·        Example: A person with high sensitivity to noise might hear a faint sound that others don't. 

Threshold

·        Definition: The minimum level of stimulus energy, intensity, or change that is needed to activate a system or produce a detectable response.

·        What it is: The minimum amount of movement required to trigger a motion event.

·        Measurement: The specific level of input that is just enough to cause a reaction. 

·        Function: A low threshold means the system is easily triggered, while a high threshold requires a greater stimulus for a response.

·        How it works: It sets the bar for how much of a motion pixel change must occur before an alert is generated.

·        Effect: A higher threshold makes the system less likely to trigger, while a lower threshold will trigger the event more easily.

·        Example: A security camera's motion threshold determines the minimum amount of pixel change required to trigger an alarm. 

Relationship in Practice

·        Sensitivity and Threshold are Inversely Related: 

When sensitivity is high, the threshold is low, meaning less stimulus is needed for a response. Conversely, when sensitivity is low, the threshold is high, requiring a stronger stimulus to get a reaction. 

·        Adjusting for Performance: 

In tasks like motion detection, you adjust these settings together.

ü  Low sensitivity (high threshold): Reduces false alarms but may miss actual events. 

ü  High sensitivity (low threshold): Detects more subtle changes but increases the risk of false alerts.

Balancing Sensitivity and Threshold

·        Reduce False Alarms: You can use a combination of a higher threshold and moderate sensitivity to avoid triggering events from non-threatening movements (like swaying branches). 

·        Capture Key Events: You might use high sensitivity with a higher threshold to ensure you don't miss real events while still filtering out minor disturbances. 

Threshold value

As you mentioned the threshold value is a number in % and is the amount of pixels that is covered by the object relative the total amount of pixels in the picture. Let’s say that a person cover 15% of the total amount of pixels. Then the threshold value is 15%. For the system to detect that person the threshold level must be set to a lower value than 15%, let´s say 10%. Now, if something covers more than 10% of the pixels in the field of view the system will acknowledge that as an object of interest. But, that information will solely not trigger the system for motion detection… Therefore, we need a second parameter called Sensibility value.

Sensibility value

Sensibility is a parameter connected to if the object is moving slowly or fast. If the object is moving at all or if it is moving slowly or fast is determined from more mathematical calculations during a certain time interval. Let´s say that at time=1 the calculation gives the first threshold value. A specific time later at time=2 the second calculation gives the next threshold value and after time=3 it gives the third threshold value. If all these threshold values are the same the object is not moving and the system will not generate a motion trigg to start a recording of a video. But, if it is a difference between the threshold values something is happening with the object and it gets interesting. If the differences between the threshold values are small the object is probably moving slow. If the difference is big the object is probably moving fast. Let´s say that the system calculates a sensibility value that is between 0 and 100. A value of 0 means no change in motion, completely still. A value of 100 means t that the object is moving very fast. In Netcam system the Sensibility can be set to; very high – normal – very low. If you want to detect an object that moves very slowly you need to set the Sensibility to very high. Small changes in the sensibility value should be recognized as important and tell the system that here is something important going on. If the object is moving fast the sensibility value is high and it will also be recognized by the system as important. Well, why not always set the Sensibility to very high because then we will never miss a moving object? That is the million dollar question. If you set the Sensibility to very high it will detect everything and you will have a lot of false alarms! If you set the Sensibility to very low you will most likely never get a false alarm, but you will never get the moving object of interest either. Setting the Sensibility correct needs quite often some testing since it is very dependent of the situation.

‘Sensitivity’ is specified by most camera manufacturers using the ISO 12232 methodology. When using this saturation-based method, a higher ISO value means that it takes less light for the image to reach saturation but does not define how sensitive a sensor is to light (i.e., how many electrons are generated per incident photon) relative to the sensor noise.

ISO 12232 was established to give people an idea how a digital sensor compared to film speed, however it was never intended to give a full range of sensor performance. High-speed cameras are used in applications that demand good performance in low-light environments, which can not be determined by the ISO spec. To achieve a higher ISO rating the display settings of an image can be manipulated, such as by reducing the bit depth or full-well capacity. These specific changes make the image appear brighter but have an adverse effect on image quality and performance.

Consider the following limitations with the ISO 12232 specification when using it to compare high-speed cameras:

·        ISO 12232 does not account for noise performance. Instead, meaningful sensor qualities like Temporal Dark Noise (aka Read Noise) and Absolute Sensitivity Threshold, which indicates how well the sensor can identify detail from noise, are key attributes to discerning low light performance of the camera.

·        ISO is easily manipulated with added gain, which lowers Signal-to-Noise Ratio (SNR) and lowers Dynamic Range (DR). This trade-off gets masked because SNR and DR are not always reported, particularly not in relation to ISO. 

·        The rounding factor – Because ISO is based on film speed, manufacturers are instructed to round up to the closest defined ISO value above what was measured. This can inflate the value by up to 1/3 F-stop and is one reason it is not possible to get accurate photon level measurements with ISO as the basis for sensitivity.

·        The light source used for measuring ISO can be Tungsten or Daylight, and a monochrome camera using a Tungsten source will have a much higher spec when an IR filter is not used. Many applications do not have scattered or reflected light matching the spectrum of tungsten or daylight sources. Instead, it is best practice to use Spectral Responsivity plots (or QE curves) to determine how many electrons are generated relative to the number of incident photons across the visible and NIR spectrum. Spectral response curves are provided for all Phantom cameras.

Ultimately, there are too many unknowns to rely on the ISO 12232 specification when comparing sensitivity or any aspect of image quality. Vision Research has moved away from ISO as the way to spec sensitivity in favor of the EMVA 1288 standard, providing customers a full set of sensor parameters to evaluate the camera’s imaging performance.

 

Wednesday, July 2, 2025

PCI- SSC in Access & Video Surveillance

PCI- SSC in Access & Video Surveillance 

The Payment Card Industry Security Standards Council (PCI SSC) does not mandate specific video surveillance requirements, but it does have general physical security requirements that can be fulfilled through video surveillance or other methods. PCI DSS Requirement 9.1.1 specifically states that organizations must monitor physical access to sensitive areas using either video cameras or access control mechanisms. 

In this era of widespread digital transactions, we cannot overstate the importance of PCI-SSC. PCI-SSC serves as a guiding beacon, directing organizations toward the highest levels of security when handling payment card information. By prioritizing and adopting PCI-SSC standards, organizations can defend themselves against online attacks and enhance the overall integrity and reliability of the global payment ecosystem. The dedication of PCI-SSC to protecting the cornerstone of contemporary commerce remains unwavering, even as technological improvements continue.

What is PCI-SSC?

The Payment Card Industry Security Standards Council is a global organization founded in 2006 by credit card companies such as Visa, MasterCard, American Express, Discover, and JCB. Its mission is to develop and improve security standards for payment card transactions. The PCI-SSC is crucial in bringing stakeholders from the payments industry to create and promote adopting data security standards and resources. It is responsible for crafting and updating the PCI Security Standards, guidelines that dictate how organizations must protect cardholder data.

Compliance with PCI-DSS is mandatory for all entities that handle credit cards, encompassing those that accept, transmit, or store such information. To assist organizations in meeting PCI-DSS requirements, the PCI-SSC offers a range of resources, including training programs, assessment tools, and best practices. The significance of PCI-SSC lies in its dedication to safeguarding cardholder data from fraud and theft, aiding organizations in reducing the risk of data breaches, and ensuring the security of their customers.

Role of PCI-SSC

1. Develop and Maintain the PCI-DSS:

The PCI-SSC actively develops and updates the PCI Data Security Standard (PCI-DSS), outlining guidelines for safeguarding cardholder data. It ensures the PCI-DSS remains current and addresses the latest security threats. The PCI-SSC actively maintains and evolves the standards to meet the dynamic challenges of securing payment card information.

2. Promote Awareness of PCI-DSS Compliance:

The PCI-SSC actively raises awareness about PCI-DSS compliance through its website, social media, and public relations campaigns. Collaborating with industry organizations, it strives to promote understanding and adherence to PCI-DSS across various channels. The PCI-SSC engages in widespread efforts to highlight and encourage compliance with PCI-DSS standards.

3. Assess Organizations for PCI-DSS Compliance:

The PCI-SSC does not directly assess organizations for PCI-DSS compliance. Instead, it approves and supervises Qualified Security Assessors (QSAs) who conduct PCI-DSS assessments. In essence, the PCI-SSC delegates the assessment process to qualified professionals to ensure compliance with PCI-DSS standards.

4. Educate and Train Organizations on the PCI-DSS:

The PCI-SSC provides diverse training programs and resources to educate organizations on complying with the PCI-DSS. These offerings encompass a broad spectrum of subjects, including security requirements, assessment procedures, and best practices, aiming to equip organizations with comprehensive knowledge and skills. The PCI-SSC actively fosters education and training to implement PCI-DSS guidelines effectively.

Importance of PCI-SSC

1. Protection Against Cyber Threats:

In the digital age, there’s been a concerning rise in cyber threats like data breaches and identity theft. PCI-SSC serves as a safeguard by establishing and maintaining security standards that businesses must follow, guaranteeing the protection of sensitive payment information from potential threats.

2. The PCI-DSS is Up-to-Date:

The PCI-SSC actively updates the PCI-DSS to address the latest security threats, ensuring that organizations employ the most effective security measures for cardholder data protection. This ongoing process reflects the commitment to staying ahead of evolving risks in the digital landscape. In essence, organizations benefit from a current and robust framework to safeguard sensitive information.

3. Facilitating PCI-DSS Compliance:

The PCI-SSC provides diverse resources, such as training programs, assessment tools, and best practices, to assist organizations in complying with the PCI-DSS. These offerings simplify the compliance process for organizations of all sizes, ensuring accessibility and support in implementing PCI-DSS guidelines.

4. Comprehensive Security Framework:

PCI-SSC establishes a comprehensive framework encompassing payment card security aspects like network security, encryption, access controls, and regular testing. This all-encompassing strategy ensures vulnerabilities are tackled from various perspectives, establishing a solid defense mechanism against potential breaches.

PCI DSS and Physical Security:

PCI DSS (Payment Card Industry Data Security Standard) includes requirements for protecting physical access to areas where cardholder data is stored, processed, or transmitted.

The PCI standard requires, “either video cameras or access control mechanisms (or both) to monitor individual physical access to sensitive areas,” which allows some flexibility. “Sensitive areas” include:

“data centers, server rooms, back-office rooms at retail locations, and any area that concentrates or aggregates cardholder storage, processing, or transmission. . . This excludes public-facing areas where only point-of-sale terminals are present, such as the cashier areas in a retail store ”

Bottom line: If your PCI compliance solution lacks relevant access control, then you will need security cameras monitoring individual physical access to your organization’s sensitive areas.

Requirement 9.1.1:

This requirement focuses on monitoring physical access to sensitive areas, which include data centers, server rooms, and other locations where cardholder data is handled.

Video Surveillance as a Solution:

Organizations can use video cameras or other access control mechanisms (like keycard systems) to meet this requirement.

Not a Requirement for Footage Retention:

Importantly, PCI DSS does not mandate a specific retention period for video surveillance footage.

Focus on Access Control:

The primary goal of these physical security measures is to prevent unauthorized access to sensitive areas, thus protecting cardholder data.

Key considerations when using security cameras for PCI compliance

Here are four additional considerations specific to security cameras in the context of PCI compliance:

  1. Regularly scheduled risk assessments. A full understanding of the security camera system, business environment, and threat environment allows for any adjustments needed to maintain compliance and continuously improve processes.
  2. Employee training & awareness. Educating employees about PCI compliance is essential to program success. Employees who are aware can understand how their role can impact compliance and support ongoing program success.
  3. Partnering with a vendor. A vendor that understands PCI compliance using security cameras and that offers solutions can remove the burden of program management from your staff, so you can focus on your mission-critical activities. Vendors also have knowledge leadership in the field that typically yields optimal program performance and results.
  4. Security cameras + access control. A hybrid solution provides the highest level of compliance and protection. Seamless integration of access control with security cameras provides a framework for full visibility and control of your security environment.

Can the video retention be motion-based?

The PCI standard does not specify whether security systems that utilize motion-based video may be used. However, 24/7 recording with time stamps provides a comprehensive, clear record of all entry and exit events in an area for access control purposes.

The advantage of motion-based recording is reduced costs for storage. The disadvantages include false positives from background motion (passing cars, blowing leaves, birds, etc.) and false negatives (cameras not activating to record incidents). 24/7 recording avoids those disadvantages, while the three-month requirement under PCI makes data storage costs manageable.

Maintaining compliance

Achieving PCI compliance is simply the beginning. Maintaining compliance requires a consistent, strategic commitment to an ongoing compliance program. The three most important elements of an effective program are:

  1. Dedicate resources necessary to continuously maintain compliance. This includes commitments of people and technologies.
  2. Regularly assess & test the information security environment. Implement a framework to identify whether controls are working and enact appropriate changes that support continuous improvement.
  3. Mature your vulnerability management. Vulnerability scans, patching, configuration management, passwords, and permissions reviews are part of an ongoing program to understand and respond to evolving vulnerabilities.

Ref:

1.      https://kirkpatrickprice.com/video/pci-requirement-9-1-1-use-either-video-cameras-access-control-mechanisms-monitor-individual-physical-access-sensitive-areas/

2.      https://www.getscw.com/knowledge-base/pci-compliance-doesn-t-need-90-days-of-footage#:~:text=PCI%20DSS%20has%20no%20specific,no%20requirements%20for%20footage%20retention.

3.      https://www.pcisecuritystandards.org/

 

Monday, November 18, 2024

Protect your Surveillance System with a VPN

Protect your Surveillance System with a VPN 

Security cameras have become an essential tool in today’s world, where security is a growing concern for businesses and individuals alike. With the help of these cameras, you can monitor your property, deter crime, and protect your loved ones. However, while security cameras are a great investment, they also come with some security risks that can put your privacy and security in danger.

One of the most significant risks of using security cameras is that they can be easily hacked, leaving you vulnerable to cybercriminals who may want to access your data or spy on your activities. This is where VPNs come in. You can protect your surveillance system with a simple VPN download process.

In this article, we will explore the importance of using a VPN to protect your surveillance system and keep your data secure.

What are VPNs, and how do they work?

A Virtual Private Network (VPN) is a service that allows you to connect to the internet securely and privately. When you use a VPN, your data is encrypted, and your IP address is masked, making it difficult for anyone to track your online activities. VPNs are commonly used to protect sensitive information, such as online banking transactions or private messages, from prying eyes. However, there are other uses for VPNs such as blocking websites from tracking you, accessing restricted content and more.

VPN services work by creating a secure connection between your device and the VPN server. Your device sends data through this connection, which is then encrypted and sent to the VPN server. The VPN server then decrypts the data and sends it to its intended destination. This process protects your data from interception or hacking by cybercriminals.

The importance of using a VPN to protect your security cameras

While security cameras are essential for monitoring your property, they are also vulnerable to cyber-attacks. If your security cameras are connected to the internet, they can be accessed remotely by hackers who may want to spy on your activities or gain access to your personal data. To protect your security cameras from these threats, it is crucial to use a VPN.

Using a VPN for your security cameras can provide several benefits, including:

  1. Protecting your privacy: When you use a VPN, your data is encrypted, and your IP address is masked. This means that hackers cannot track your online activities or access your personal information, providing an added layer of security for your security cameras.
  2. Securing your footage: By using a VPN, you can ensure that your security footage is kept private and secure. This is especially important for businesses that may have sensitive information captured on their security cameras.
  3. Preventing unauthorized access: VPNs can also prevent unauthorized access to your security cameras. By creating a secure connection between your device and the VPN server, you can ensure that only authorized users can access your security footage.
  4. Protecting against cyber-attacks: VPNs can protect your security cameras from cyber-attacks such as hacking or malware. This is because the VPN encrypts your data and prevents it from being intercepted by cybercriminals.
  5. Avoiding geo-restrictions: In some cases, security  cameras may be restricted to certain regions or countries. By using a VPN, you can bypass these restrictions and access your security cameras from anywhere in the world.

How to choose the right VPN for your security cameras

Choosing the right VPN for your security cameras is essential to ensure maximum protection and privacy. Here are some factors to consider when choosing a VPN:

  1. Encryption: Look for a VPN that uses strong encryption, such as AES 256-bit encryption. This ensures that your data is protected and cannot be easily decrypted by hackers.
  2. Server locations: Choose a VPN that has servers located in different regions or countries. This allows you to bypass geo-restrictions and access your security cameras from anywhere in the world.
  3. Compatibility: Make sure the VPN is compatible with your security cameras. Some security cameras may not be compatible with certain VPNs, so it is important to check before signing up.

Friday, January 1, 2021

Upcoming Trends in security & surveillance for 2021

Upcoming Trends in Security & Surveillance for 2021 

It’s fair to say 2020 has not been the year any of us were expecting. It has been challenging, we have all made sacrifices, and there are still further obstacles in our path as we try to get back to “normal”. SARS-CoV-2, the coronavirus strain that causes COVID-19, is a highly contagious respiratory illness that is affecting lives worldwide. Epidemics and pandemics have been threatening the human race time and again. SARS, H1N1, Ebola, and more have shown their teeth in the past, but with each such outbreak, we are learning new ways of fighting and managing such unexpected diseases that can potentially kill millions of people. Technology cannot prevent the onset of the pandemics; however, it can help prevent the spread, educate, warn, and empower those on the ground to be aware of the situation, and noticeably lessen the impact. The pandemic of 2020 has certainly changed the landscape for us all, not just the security industry. It has made us a lot more aware of touch points, crowded gatherings and personal space. It is inevitable that technology will adapt as our lives do. We have already seen manufacturers race to bring us solutions such as body temperature management, face mask detection and crowd control etc. It’s time to change. It’s time to get better. It’s time to learn more and sharpen our skills.’

During pandemic Webinar is boom through Zoom. Google meet, Gotowebiner etc in security safety automation industry. System Integrator, End Users, professionals are learn many things through OEM direct Webinar. US already ban China made surveillance product. In india Atmanirbhar Bharat (self-reliant India) is the vision of the Prime Minister of India Narendra Modi of making India a self-reliant nation. The first mention of this came in the form of the 'Atmanirbhar Bharat Abhiyan' or 'Self-Reliant India Mission' during the announcement of the coronavirus pandemic related economic package on 12 May 2020. Known china CCTV OEM are thrown out. Yes, it’s true, India don’t have much infrastructure to generate Camera manufacturing plant, it will take time at list 5 year. Within this time, we can follow BIS website to get information about selected camera / NVR model are china factory make or not. Low cost and high cost both option camera you can found. If you found that model belongs to china factory immediately change with Closest or Alternative Substitute. Now we check what will be next in 2021 for Security Safety & Automation.

OSHA new Policy:

The COVID-19 outbreak has caused almost all firms to deploy the work from home practice for employees. While some may be used to this, others may feel lost in the exercise. While not all Indian are able or fortunate enough to work from home, many have transitioned to telecommuting and virtual work over the last week or two.

While employers’ responsibilities for the safety and health of their at-home workers is less than those in the office or onsite, some do still exist. OSHA distinguishes between home offices and other home workplaces.
OSHA’s compliance directive on home offices is pretty clear:
·     “OSHA will not conduct inspections of employees’ home offices.
·     “OSHA will not hold employers liable for employees’ home offices, and does not expect employers to inspect the home offices of their employees.
·   “If OSHA receives a complaint about a home office, the complainant will be advised of OSHA’s policy. If an employee makes a specific request, OSHA may informally let employers know of complaints about home office conditions, but will not follow-up with the employer or employee.”
What about recording injuries while working at home? If an employee is working at home, when could the injury be considered work-related? OSHA answers the question:
How do I decide if a case is work-related when the employee is working at home? Injuries and illnesses that occur while an employee is working at home, including work in a home office, will be considered work-related if the injury or illness occurs while the employee is performing work for pay or compensation in the home, and the injury or illness is directly related to the performance of work rather than to the general home environment or setting.

Video Intercoms:

One of the newer phenomena we’ve faced in the world has been the concept of physical distancing, brought to light by the global coronavirus pandemic. This has created challenges not only socially, but for technologies that were not designed to accommodate what may be the new norm. Video intercoms are really going to be playing a bigger part in the way facilities are organized and processes are organized. We’re seeing some customers that are using this to limit having to actually go inside a room in a healthcare facility, for example, to limit the chances of transmitting something all while maintaining that frequency of checking. One of the main benefits of door intercoms is, simply put, the ability to limit — or even eliminate — human contact at the door. In this pandemic, an immediate need is providing [the customer with] a way to create physical distancing upon entry. This can also be applied to healthcare workers. Integrators have to understand this greater demand for security at the door and deliver solutions to their customers. Everybody is having food, groceries and other things delivered to their door. Demand for that is very high right now. Additional security at the door or the gate is something people want and need.

Home Over IP:

Amazon, Apple, Google and the Zigbee Alliance announced a new working group that plans to develop and promote the adoption of a new, royalty-free connectivity standard to increase compatibility among smart home products, with security as a fundamental design tenet. Zigbee Alliance board member companies such as IKEA, Legrand, NXP Semiconductors, Resideo, Samsung SmartThings, Schneider Electric, Signify (formerly Philips Lighting), Silicon Labs, Somfy and Wulian are also on board to join the working group and contribute to the project. The goal of the Connected Home over IP project is to simplify development for manufacturers and increase compatibility for consumers. The project is built around a shared belief that smart home devices should be secure, reliable and seamless to use. By building upon IP, the project aims to enable communication across smart home devices, mobile apps and cloud services, and to define a specific set of IP-based networking technologies for device certification.

Video Surveillance:

The global CCTV camera market is anticipated to generate substantial revenue of more than to USD 38 billion till 2021. Asia Pacific and America holds the largest share of the global market and act as one of the main driver for the market. According to “India CCTV Camera Market Outlook, 2021”, the India CCTV Camera market is expected to grow with a CAGR of more than 26 % in the period from 2016 to 2021. Technology wise non-IP dominates the Indian market but in the coming years IP is expected to take the lead soon. Non -IP technology constitutes of analog and HD CCTV cameras. Analog is technology which is in a depleting stage and it share is expected to be taken by the IP technology and the HD type CCTV camera. Dome typed cameras are the most widely used cameras in any sectors. Commercial segment is the driver of the CCTV market in India with the increasing count of SOHO’s and SME’s. With the increasing security concerns, residential sector would also be one of the factors for the increasing market. As criminal activities are more in the northern region of India, North dominates the market in terms of revenue.

Facial Recognition:

Facial recognition is the common theme of the week’s top digital identity news with retail applications, new edge servers, and biometric border control deployments around the world. A new software partnership on biometric cryptography has also been announced, a report shows the importance of selfie biometrics in fraud reduction published, and the industry, as well as society more broadly, continues to contend with the issue of algorithmic bias. Facial recognition solutions identify a person by forming a unique code built on algorithms from multiple points on a person’s face, including nose, chin, lips, eyes and jaw. However, when a person wears a mask, many of these key points are not visible. Faces were often completely missed, and unsuccessful or false identifications were high. Those are know this wearing masks can reduce the accuracy they avoid to take Facial recognition

Video Verification:

The city currently has over 1,000 video surveillance cameras deployed across the metropolitan area and is expected to reach over 1,700 security devices. Now it’s very difficult to watch every moment on comment control center. It’s very important to see what camera saw. Through Video Auditing software the task are easy. Day by day its increase.

Rise of Mobile Credentials:

There has been a tremendous uptick in the popularity of mobile credentials. Research firm IHS Markit has reported that mobile-based credentials are the fastest-growing access control product. Globally they have experienced nearly a 150 percent growth between 2017 and 2018. Estimates show that more than 120 million mobile credentials will be downloaded in 2023 by end users. A 2019 survey by HID estimated that 54% of businesses had upgraded or would upgrade to a mobile access control system in the next three years. Though access cards still play a powerful role in the access control market, we are seeing a strong shift towards mobile access control like various companies. The use of mobile-based credentials is the logical next step for the physical security and access control industry. The fact that people are always with their smartphone helps popularise this trend. Phones aren’t just phones anymore. They play a bigger role in day-to-day life and this also includes access control. Mobile credentials can revolutionise the industry, eliminating the need to carry and wipe a card. Instead, a phone’s technology can be used to authenticate identity and grant entry. This gives greater flexibility, improves privacy and can also lower the maintenance costs of credential management for end users. Additionally, a clear advantage is that employees are more likely to carry their smartphone with them and less likely to lose them compared to NFC transponders.

The advantages of using virtual access control cards, which are stored on smartphones, are obvious: less logistics when distributing, revoking or replacing cards and many more ways to integrate with technology on the phone or other hosts and devices in the network. Often also the user experience of mentioned as a benefit of mobile access: users do not have to fill up their wallets with a pile of RFID cards but can conveniently carry them around in their phone. The networking capacity of smartphones would even be a great way to overcome the limitations of offline access control installations where access rights would be stored on smartphones instead of cards.

Security in the cloud:

After the entrance of IP-networking in security around twenty years ago, it is one of the major current trends in our industry: cloud based security systems. In the context of physical security one could define cloud based systems as those systems with a topology that looks like this:
·       A server that is ‘in the cloud’ and can be accessed from virtually anywhere;
·       Devices that connect over an IP-network to that central server;
·       Web based administration of the system;
·       Commercially based on a service or transaction model with recurring fees.
Variations exist. But in general this pretty much sums up what to expect when reviewing a cloud based system.
We see this set-up currently already in several categories:
·               Video Intercom Systems, like the systems from Akuvox, which are based on video intercom stations that connect to a cloud based server, which also enables use of apps as virtual door phones.
·   Mobile access systems that enable the use of virtual credentials on smartphones. and that are managed from a cloud based server.
·               Video management software now also is offered by several vendors as a cloud service, for example: 3dEYE, Open Eye, and VIVOTEK.

IoT security topologies:

The Internet of Things idea has been around for ages. It was predicted over a decade ago that billions of device will connect to the Internet. Sensors all around us will deliver data to the cloud. Feeding data into ‘big data’ processing applications that will give us access to a wealth of information. Devices also connect the cloud. To be part of applications that can be used and managed from virtually any location. For security it would mean that it very much is related to cloud based security applications. The additional step here would be that camera’s, readers, intercoms, intrusion detection sensors and biometric stations would connect directly to the cloud based service. Installations would be easier and more scalable. Access control systems could be deployed at any door and still be real online access control systems. Video surveillance would be available at any location that would require security monitoring. Security sensors and devices can be rolled out everywhere.

Smartphones and wearables

Using smartphones or other wearable devices in security has been a popular idea for many years. Smartphones and tablets often can be used to access the administration Interface (GUI) of the access control, video management or PSIM systems. That hardly is considered an innovation. Smartphones can also be used as virtual access control and identity cards in mobile acess systems. In addition it appears that also biometrics like facial recognition and fingerprint identification are now available on smartphones. It appears logical that smartphones with their native connectivity features are an interesting extension of security systems.
Mobile credentials enable both multimodal and multi-factor authentication. Multimodal means proving identity and/or gaining access using at least two separate biometrics, or permitting access through any one of various credentials, such as a smartcard or PIN. Multi-factor authentication involves proving identity and/or obtaining access via at least two methods or credentials. Multi-factor authentication is widely used in digital access. For example, when an employee logs onto a company’s system, he or she must use a secondary method to verify identity via a one-time token via SMS or other app. It is also burgeoning in physical access applications. Although two-factor authentication has been mandated in regulated industries, it is emerging in unregulated verticals as well. The development of multimodal readers will continue to fuel this trend.
Believers say that people prefer carrying around their smartphone over additional cards. They refer to the technical possibilities that smartphones offer in areas like user convenience and integration of systems.

Identity analytics and AI

A relatively new field in security is identity analytics. Seeing through identity and security related data in an automated way. To monitor use of access priviliges and consequently alter those access rights. The idea comes from the IT industry and that is where you will see it deployed mostly now. Recent research indicates that this is an emerging market with high anticipated growth potential. It would make sense to include physical security into these applications.
Believers will say that, like with video analytics, many more security related events can be actively monitored, more incidents can be detected and a tighter security regime can be implemented without hindering users unnecessarily.
It remains to be seen what the future will bring exactly. But intelligent security related data analytics certainly will have a place in modern enterprise security management applications.

Centralized Control of Fire Detection:

The principle of networking involves connecting several panels together to form a system. Inputs on one panel may activate outputs on another, for example, or the network may allow monitoring of many systems. Networking is often used in situations where one panel is not large enough, or in multiple-building situations. Networking is also an effective way to decouple systems to reduce the risk of a large portion of a facility going offline at any time due to system failure or maintenance requirements. Sub-Networks can be created using either hardware or software architectures. Networked systems normally are more costly and involve additional training and system configuration for successful implementation.


From this year many customer implement centralised monitoring & controlling of Fire Panel through creating WLAN communication with Graphic software. Due to cost effective graphical monitoring control software only industrial & Enterprise business implement the same. Also it will possible if same brand panel is there in all location.

BMS Workforce:

The growth of IBMS market is observing hindrance due to lack of availability of skilled workforce. The Intelligent building management systems are usually complex and require skilled personals to operate. The cost of training operators to handle complex equipment such as HVAC control, outdoor controls, security and access control, energy management systems and smart meters is quite high. Owing to which, small scale companies cannot afford to invest large capital to train their operators. This factor is likely to affect the growth of the IBMS market in the country.
But due to COVID-19 many OEM & society presence webinar program to educate more. This will be effect in this 2021-22. The region segmentation for the IBMS market has been done by South IndiaWest IndiaNorth IndiaEast India. Which include general lighting controls, communication systems, security controls, HVAC controls, access controls, outdoor controls entertainment controls and others. The India IBMS market is segmented by application into: hospitality, residential and retail, life science, office space, manufacturing, and energy and infrastructure. All these segments have also been estimated on the basis of geography in terms of revenue (USD Million).

The goal of building management systems was—and still is—to help optimize building performance by

·       Providing data on core building operational systems, specifically HVAC. 

·       Enabling the automatic control of a building’s main operating functions. 

IoT for buildings has the same goal of performance optimization (and by extension, saving money) through data and automatic control, but advanced technology takes these aspects many steps further than a traditional BMS system can. 

We wish you all the very best for 2021 and we look forward to working with you for many years to come.