Showing posts with label 1280x720. Show all posts
Showing posts with label 1280x720. Show all posts

Sunday, August 26, 2018

Difference between Optic Modem and Media Converter

Difference between Optic Modem and Media Converter

Fiber Optic Modem
Fiber Optic Modem, also known single-port optic multiplexer, is a point-to-point type terminal equipment which uses a pair of optic fibers to achieve the transmission of E1 or V.35 or 10base-T. Fiber modem has the function of modulation and demodulation. Fiber modem is local network relay transmission equipment, suitable for base station transmission fiber terminal equipment and leased-line equipment.

Fiber modem is similar to the baseband MODEM (digital modem). The only difference from baseband MODEM is that it access fiber line, the optical signal. The multi-ports optic transceiver generally called multiplexer. For multi-port optical multiplexer is normally be directly called “multiplexer”, single-port multiplexer is generally used on the client, similar to commonly used WAN line (circuit) networking with the baseband MODEM, and also named for “fiber modem”, “optical modem”.

Fiber Media Converter
Fiber Media Converter is a simple networking device making the connection between two dissimilar media types become possible. Media converter types range from small standalone devices and PC card converters to high port-density chassis systems that offer many advanced features for network management.

Fiber media converters can connect different local area network (LAN) media, modifying duplex and speed settings. Switching media converters can connect legacy 10BASE-T network segments to more recent 100BASE-TX or 100BASE-FX Fast Ethernet infrastructure. For example, existing half-duplex hubs can be connected to 100BASE-TX Fast Ethernet network segments over 100BASE-FX fiber.
When expanding the reach of the LAN to span multiple locations, media converters are useful in connecting multiple LANs to form one large campus area network that spans over a limited geographic area. As premises networks are primarily copper-based, media converters can extend the reach of the LAN over single-mode fiber up to 160 kilometers with 1550 nm optics.


Wavelength-division multiplexing (WDM) technology in the LAN is especially beneficial in situations where fiber is in limited supply or expensive to provision. As well as conventional dual strand fiber converters, with separate receive and transmit ports, there are also single strand fiber converters, which can extend full-duplex data transmission up to 120 kilometers over one optical fiber.

Other benefits of media conversion include providing a gradual migration path from copper to fiber. Fiber connections can reduce electromagnetic interference. Also fiber media converters pose as a cheap solution for those who want to buy switches for use with fiber but do not have the funds to afford them, they can buy ordinary switches and use fiber media converters to use with their fiber network.

Main Difference between Media Converter And Optical Modem
The difference between the media converter and optical modem is that the media converter is to convert the optical signal in the LAN, simply a signal conversion, no interface protocol conversion. While, fiber modem for WAN is the optical signal conversion and interface protocol conversion, protocol converter has two types of E1 to V.35 and E1 to Ethernet.

In fact, as the developing of network technology, the concept of media converter and fiber modem has become increasingly blurred, which are basically can be unified for the same equipment. Media converter becomes the scientific name of fiber modem.


Few things need to know, There are two primary types of fiber optic cable, single mode fiber (SMF) and multimode fiber (MMF). The former has a very thin core about 5-10 microns in diameter, which is about 10 percent of the latter. Generally, single-mode optical fibers used in telecommunications operate at 1310nm or 1550nm wavelength while multimode fiber at 850nm and 1300nm. However, sometimes, the subdivision of the two types is different due to various fiber optic cable manufacturers. single mode optical fiber cable is used for longer distances such as 100km compared with multimode fiber under 2km due to the smaller diameter of the fiber core. Therefore, single mode optical fibers are typically used outside between buildings in cable TV, internet, and telephone signals transmission while multimode fibers are used within buildings in backbone applications such as computer network linking.

Normally, fiber optic cable speed rates at 10 Gbps, 40 Gbps and even 100 Gbps.
Generally, one fiber optic cable is made up of incredibly thin strands of glass or plastic known as optical fibers (called “core”) surrounded by an insulated casing (called “cladding). Each strand is a little thicker than a human hair and can carry much data like 25,000 telephone calls. Therefore, an entire fiber optic cable can easily carry as much data as you can imagine.

Saturday, March 22, 2014

360p, 480p, 720p, 1080p Measure Up

360p
This is an Animoto video’s default resolution. The majority of YouTube and Hulu videos are displayed in 360p, so that’s about the video quality that 360 lines of resolution provides. This (as well as the 480p) is a great resolution for mobile devices since the mobile screen rarely has enough pixels or enough memory to support HD videos.

480p

640x480 (480p) is the resolution that almost every camera can shoot at, most digicams from the last two years shoot at least 480p. Although there are lower resolutions (typically for high speed video), 640x480 should really be the lowest resolution to consider. 640x480 is a pretty good resolution, its not HD but its the resolution of standard definition television (SDTV) and a good quality source at 480p can look pretty good. Most people will be happy with this resolution but those who love the idea of widescreen, high definition home movies will want to venture into the two HDTV options. A 480p video will play beautifully on both your laptop and desktop monitors, and though it isn’t quite HD, it is definitely good enough to view on that spiffy new flatscreen TV you just bought

How does 480p Measure Up?

§  480p vs 720p: 480p has 1/3 the resolution
§  480p vs 1080p: 480p has about 1/7 the resolution
§  Click on the full resolution sample and you'll see that a clean 480p image can be fantastic - DVD is after all "only" 480p
720p (1280x720)
1280x720 (720p) is the lowest of two HDTV resolutions. The ability for digital cameras to shoot high definition video started to pick up in 2009 and is now available on many cameras. 720p provides fantastic video quality that is perfect for large screen TVs and high definition home movies. An HD 720p Animoto video is crisp, sharp, and takes full advantage of any display you want to view it on

How does 720p Measure Up

§  720p vs 480p: 720p has 3X the resolution
§  720p vs 1080p: 720p has about 1/2 the resolution
§  720p is a fantastic high definition resolution to shoot at
 1080p (1920x1080)
1920x1080 (1080p) is the highest of two HDTV resolutions. 1080p is also known as Full HD and is very high resolution video. Because of it's extreme size it requires more storage space, faster computers to edit, more powerful camera processors and a very large TV to notice the difference. Currently 12 of 500 cameras released in the last 2 years shoot 1080p

How does 1080p Measure Up?

§  1080p vs 480p: 1080p has 7X the resolution
§  1080p vs 720p: 1080p has about 2X the resolution
§  1080p is a fantastic high definition resolution to shoot at
§  1080p is the pinnacle of HD quality - but more suited for pros and hard core enthusiasts.

High Definition Formats (I.E. HDTV):
720p - The Resolution is 1280x720 pixels, sent at 60 complete frames per second.
1080i - The Resolution is 1920x1080 pixels, sent at 60 interlaced frames per second or 30 complete frames per second.
1080p - The Resolution is 1920x1080 pixels, sent at 60 complete frames per second.