Showing posts with label DDC. Show all posts
Showing posts with label DDC. Show all posts

Sunday, December 1, 2019

GUIDE TO BUILDING AUTOMATION

GUIDE TO BUILDING AUTOMATION

Building automation is monitoring and controlling a building’s systems including: mechanical, security, fire safety, lighting, heating, ventilation, and air conditioning.

Such systems can
  • ·         keep building climates within a specified range,
  • ·         light rooms according to an occupancy schedule,
  • ·         monitor performance and device failures in all systems, and
  • ·         alarm facility managers in the event of a malfunction.

Relative to a non-controlled building, a building with a BAS has lower energy and maintenance costs.
There are many components to a building automation system that require a little explaining to understand, and the benefits of installing such a system may not be immediately clear until you understand the mechanisms driving these systems.

That’s why we created this ultimate guide to understanding building automation systems. It’s designed to be an easy read-through, but feel free to use the links below to go directly to a topic that is relevant to your own research.


WHAT IS BUILDING AUTOMATION?
Building automation most broadly refers to creating centralized, networked systems of hardware and software monitors and controls a building’s facility systems (electricity, lighting, plumbing, HVAC, water supply, etc.)

When facilities are monitored and controlled in a seamless fashion, this creates a much more reliable working environment for the building’s tenants. Furthermore, the efficiency introduced through automation allows the building’s facility management team to adopt more sustainable practices and reduce energy costs.

These are the four core functions of a building automation system:
·         To control the building environment
·         To operate systems according to occupancy and energy demand
·         To monitor and correct system performance
·         To alert or sound alarms when needed
At optimal performance levels, an automated building is greener and more user-friendly than a non-controlled building.


A Building Automation System may be denoted as:
An automated system where building services, such as utilities, communicate with each other to exchange digital, analogue or other forms of information, potentially to a central control point.

What Is Meant By ‘Controlled?
A key component in a building automation system is called a controller, which is a small, specialized computer. We will explore exactly how these work in a later section. For now, it’s important to understand the applications of these controllers.

Controllers regulate the performance of various facilities within the building. Traditionally, this includes the following:
·         Mechanical systems
·         Electrical systems
·         Plumbing systems
·         Heating, ventilation and air-conditioning systems
·         Lighting systems
·         Security Systems
·         Surveillance Systems
A more robust building automation system can even control security systems, the fire alarm system and the building’s elevators.
To understand the importance of control, it helps to imagine a much older system, such as an old heating system. Take wood-burning stoves, for example. Anyone heating their buildings through pure woodfire had no way to precisely regulate the temperature, or even the smoke output. Furthermore, fueling that fire was a manual effort.
Fast-forward 150 years: Heating systems can be regulated with intelligent controllers that can set the temperature of a specific room to a precise degree. And it can be set to automatically cool down overnight, when no one is in the building.
The technology that exists today allows buildings to essentially learn from itself. A modern building automation system will monitor the various facilities it controls to understand how to optimize for maximum efficiency. It’s no longer a matter of heating a room to a specific temperature; systems today can learn who enters what rooms at what times so that buildings can adjust to the needs of the tenants, and then conserve energy when none is needed.

There is a growing overlap between the idea of controlling a building and learning from all the data the system collects. That’s why automated buildings are called “smart buildings” or “intelligent buildings.” And they’re getting smarter all the time.

THE EVOLUTION OF SMART BUILDINGS
Kevin Callahan, writing for Automation.com, points to the creation of the incubator thermostat — to keep chicken eggs warm and allow them to hatch — as the origin of smart buildings.

Like most technologies, building automation has advanced just within our lifetimes at a rate that would have baffled facility managers and engineers in, say, the 1950s. Back then, automated buildings relied on pneumatic controls in which compressed air was the medium of exchange for the monitors and controllers in the system.

By the 1980s, microprocessors had become small enough and sufficiently inexpensive that they could be implemented in building automation systems. Moving from compressed air to analog controls to digital controls was nothing short of a revolution. A decade later, open protocols were introduced that allowed the controlled facilities to actually communicate with one another. By the turn of the millennium, wireless technology allowed components to communicate without cable attachments.


An Intelligent Building system may be denoted as:
An automated system where building services and corporate processes, communicate with each other to exchange digital, analogue or other forms of information, to a central control point to manage the environment.

Terms to Understand
At first, the terms building automation professionals use look like a big game of alphabet soup. There are acronyms everywhere. Let’s clarify this now: 

Building Management System (BMS) and Building Control System (BCS) — These are more general terms for systems that control a building’s facilities, although they are not necessarily automation systems.
Building Automation System (BAS) — A BAS is a subset of the management and control systems above and can be a part of the larger BMS or BCS. That said, building management and building automation have so thoroughly overlapped in recent years that it’s understandable people would use those terms interchangeably.
Energy Management System (EMS) and Energy Management Control System (EMCS)— These are systems that specifically deal with energy consumption, metering, etc. There is enough overlap between what a BAS does and what an EMS does that we can consider these synonymous.
Direct Digital Control (DDC) — This is the innovation that was brought about by small, affordable microprocessors in the ‘80s. DDC is the method by which the components of a digital system communicate.
Application Programming Interface (API) — This is a term common in computer programing. It describes the code that defines how two or more pieces of software communicate with one another.
What makes the terminology particularly complicated is that the technology evolves so quickly that it’s hard to know at what point a new term needs to be applied. Then, you also have professionals in different countries using different terms but still having to communicate with one another. Just be prepared for the terminology to be in a state of flux.


HOW DO BUILDING AUTOMATION SYSTEMS WORK?
Basic BAS have five essential components:
Input devices / Sensors — Devices that measure values such as CO2 output, temperature, humidity, daylight or even room occupancy.
Controllers — These are the brains of the systems. Controllers take data from the collectors and decide how the system will respond.
Output devices — These carry out the commands from the controller. Example devices are relays and actuators.
Communications protocols — Think of these as the language spoken among the components of the BAS. A popular example of a communications protocol is BACnet.
Dashboard or user interface — These are the screens or interfaces humans use to interact with the BAS. The dashboard is where building data are reported.

What a BAS Can Do
·         It can set up the lighting and HVAC systems to operate on a schedule that makes those systems both more intelligent and more efficient.
·         It can get the various components and facilities within a building to coordinate and work together toward greater overall efficiency.
·         It can optimize the flow of incoming outside air to regulate freshness, temperature and comfort inside the building.
·         It can tell you when an HVAC unit is running in both heating and cooling helping to reduce utility costs.
·         It can know when an emergency such as a fire breaks out and turn off any facilities that could endanger building occupants.
·         It can detect a problem with one of the building’s facilities — such as, for example, an elevator getting stuck with people inside — and send an instant message or an email to the building’s facility manager to alert him/her of the problem.
·         It can identify who and when someone is entering and leaving a building
·         It can turn a camera on a begin recording when activity takes place – and send an alert and direct camera feed to the security team and facility manager.
·         Are there other functions that address clear pain points for building owners / facility managers?


The Role of Controllers
Controllers are the brains of the BAS, so they require a little more exploration. As mentioned above, the advent of direct digital control modules opened up a whole universe of possibilities for automating buildings.

A digital controller can receive input data, apply logic (an algorithm, just as Google does with search data) to that information, then send out a command based on what information was processed. This is best illustrated through the basic three-part DDC loop:
1.   Let’s say a sensor detects an increase in temperature in a company’s board room when the room is known to be unoccupied.
2.   The controller will apply logic according to what it knows: That no one is expected in that room, thus there is no demand for additional heat, thus there is no need for that room to warm up. (Note: The algorithm with which a controller processes information is actually far more complex than depicted in this example.) It then sends a command to the heating system to reduce output.
3.   The actual heating unit for the boardroom in question receives that command and dials back its heat output. All of this appears to happen almost instantaneously.

WHY ARE BUILDING AUTOMATION SYSTEMS USEFUL?
 The benefits of building automation are manifold, but the real reasons facility managers adopt building automation systems break down into three broad categories:
·         They save building owners money
·         They allow building occupants to feel more comfortable and be more productive
·         They reduce a building’s environmental impact
Saving Money
The place where a BAS can save a building owner a significant amount of money is in utility bills. A more energy-efficient building simply costs less to run.

An automated building can, for example, learn and begin to predict building and room occupancy, as demonstrated earlier with the heated board room example. If a building can know when the demand for lighting or HVAC facilities will wax and wane, then it can dial back output when demand is lower. Estimated energy savings from simply monitoring occupancy range from 10-30%, which can add up to thousands of dollars saved on utilities each month.

Furthermore, a building can also sync up with the outdoor environment for maximum efficiency. This is most useful during the spring and summer, when there is more daylight (and thus less demand for interior lighting) and when it is warmer outside, allowing the building to leverage natural air circulation for comfort.

Data collection and reporting also makes facility management more cost efficient. In the event of a failure somewhere within the system, this will get reported right on the BAS dashboard, meaning a facility professional doesn’t have to spend time looking for and trying to diagnose the problem.

Finally, optimizing the operations of different building facilities extends the lives of the actual equipment, meaning reduced replacement and maintenance costs.
Typically, facility managers find that the money a BAS saves them will over time offset the installation and implementation of the system itself.

Comfort and Productivity
Smarter control over the building’s internal environment will keep occupants happier, thereby reducing complaints and time spent resolving those complaints. Furthermore, studies have shown that improved ventilation and air quality have a direct impact on a business’s bottom line: Employees take fewer sick days, and greater comfort allows employees to focus on their work, allowing them to increase their individual productivity.

Environmentally Friendly
The key to an automated building’s reduced environmental impact is its energy efficiency. By reducing energy consumption, a BAS can reduce the output of greenhouse gases and improve the building’s indoor air quality, the latter of which ties back into bottom-line concerns about occupant productivity.
Furthermore, an automated building can monitor and thus control waste in facilities such as the plumbing and wastewater systems. By reducing waste through efficiencies, a BAS can leave an even smaller environmental footprint. In addition, a regulatory government agency could collect the BAS’s data to actually validate a building’s energy consumption. This is key if the building’s owner is trying to achieve LEED or some other type of certification.

The fact that everything is integrated into one control system, instead of three separate systems, is a real positive – Arindam Bhadra, Technical Head, SSA Integrate.

Sources



Monday, November 11, 2019

Increase of BMS cables sale

Increase of BMS cables sale

The global IBMS market is highly fragmented with the presence of several global and local vendors. Global vendors mostly operate as original equipment manufacturers (OEMs), catering to the requirements of the end-user through distributors/dealers or system integrators. Technical knowledge and ability to customize based on end-user requirement by vendors will hold the key to a strong foothold in the market.

Building management system cables also commonly known as BMS cables, intelligent building cables or automation cables are used to automate all of the systems in place within a building or home. Research suggesting the BMS market will reach $19.25 million by 2023; it’s even more of an opportunity for electrical contractors to capitalize.

The global IBMS market will continue to grow at a healthy pace throughout the forecast period. Apart from energy and cost savings, other important drivers are the degree of flexibility provided by open IBMS solutions, the high degree of productivity it provides, and a higher return on investment along with enhanced security. These factors are attractive to many businesses, thus driving the market growth.

An advance Building Management System can control the safety in homes and offices, monitoring doors and windows for alarm systems and detect floods and fires. Equipment and installations are designed for the control, monitoring and optimization of various functions and services provided in a building that includes: heating, ventilation, air-conditioning, lighting, security systems and the operation of electric / electronic applications. 

A shielded cable that is not grounded does not work effectively. Any disruptions in the path can raise the impedance and lower the shielding effectiveness. Firstly make sure you have a cable with sufficient shielding for the application's needs. In moderately noisy environments, a foil alone may provide adequate protection. screened cable (plural screened cables) Wire for the transmission of electricity or electronic signals, protected by an enclosing web of earthed wire mesh to avoid electromagnetic interference from (or to) other signals. Grounding: a point in contact with the ground, a common return in an electric circuit and a arbitrary point of zero voltage potential. It also provides personal safety and protects the equipment. Control the voltages developed on the ground when the earth-phase short circuit returns through a near or distant source. Provide a stable voltage reference to signals and circuits. Minimize Electromagnetic Emission (EMI) effects.

Shielding: The shield must be connected to the signal reference potential of what is being protected. When there are multiple segments keep them connected, ensuring the same reference potential. The shielding is only efficient when it establishes a low impedance path to the ground. A floating shielding does not protect against interference. The use of non-magnetic metals around conductors does not shield against magnetic fields.

The cabling of the industrial communication systems (Modbus RS485) is different in some ways from the cabling used for power cabling and the electrician may experience some difficulties if he is not an expert in Modbus communication networks. A Modbus RS485 connects a Master device to one or more Slave devices. Henceforth, we shall consider Slave devices to be measuring instruments with serial communication, even if the cabling is similar for all Modbus devices.

Cable Selection
You should consider the following:
·         How many conductors do you need?
A minimum of three conductors, but the shield may be used as the common conductor, so shielded two conductor cable may be used. If you do not use shielded cable, then at least three conductors are required. Some RS-485 devices do not use a common connection, but we recommend always connecting common for reliable performance and to avoid damage due to surges.
·         What wire gauge do you need?
·         For unterminated networks, the current will generally be less than 10 mA and any gauge should work; we recommend #24 AWG to 18 AWG.
·         For terminated networks, the current can be 60 mA or higher, so heavier gauge wire may be needed for very long runs.
·         We recommend #22 to #20 AWG for runs up to 1000 ft. (~300 m).
·         We recommend #20 to #16 AWG for runs up to 4000 ft.(~1200 m).
·         What should the cable impedance and capacitance be?
Cables suitable for use in an RS-485 network should have an impedance of between 100 and 130 ohms, a capacitance between conductors of less than 30 pF per foot (100 pF per meter), and a capacitance between conductors and shield less than 60 pF per foot (200 pF per meter).
·         Do you need shielding?
Because RS-485 is differential, it is less susceptible to interference, so shielding is not always necessary. However, we recommend shielding for long runs and if there is electrically noisy equipment nearby like variable speed drives. If you use shielded cable, connect the shield to earth ground at one end (generally the PC or RS-485 master).
·         Do you need twisted wires?
Yes, especially for non-shielded cable.
·         What voltage rating do you need?
We recommend wire or cable rated for the highest voltage present. So if you are monitoring a 120/208 Vac panel, you should use 300 V rated cable. If you are monitoring a 480Y/277 volt circuit, use 600 V rated cable. If you have the WattNode in a separate enclosure and there is no way the mains wires can contact the Modbus output cable, then you could safely use lower voltage rated cable, such as 150 V or lower. Long runs of 300 V or 600 V rated cable may be expensive, so it may be more economical to use lower voltage rated cable and use a protective jacket in the regions where the cable is in the vicinity of dangerous voltages.
·         Can you run the RS-485 network cable adjacent to or in the same conduit with mains wires?
We strongly recommend against this. There may be interference from the high voltages and currents present on the mains wires, and if there is any insulation fault, arcing, etc. on the mains wires, it could put dangerous voltages on the low-voltage RS-485 network cable.

Most modern buildings now incorporate some form of BMS, focusing primarily on energy efficiency and saving costs. Whether that’s through proximity sensor lighting, climate control, door entry or security, they all work to achieve the same goal.

Efficient lighting control in a BMS system is just one way of reducing energy and saving costs for building owners. Using BMS, lighting can be automatically adjusted, depending on natural light detected or amount of people in the building. These cables are available in Low Smoke Halogen Free (LSHF), meaning they give off minimal smoke and toxic fumes. This is ideal for installation in public buildings such as schools, hospitals or airports where evacuation may be difficult in the event of a fire.

Unlike what happens in many energy distribution systems, the manner in which the devices are connected in parallel is important. The RS-485 system used for Modbus communication provides a main cable (Bus or backbone), to which all the devices have to be connected with branches (also known as stubs) that are as short as possible. The branches must be no longer than 1200 mtr.
Maximum distance and maximum number of devices. The main cable must be no longer than 700 m! This distance does not include the branches (which must nevertheless be short). The maximum number of devices that can be connected to a main cable is 32, including the Master.


In order to increase the extent of the Modbus network, repeaters can be used; and signal amplifying and regenerating devices provided with two communication ports that transfer to each what they receive from the other.
The cable shield must be earthed only in one point. Normally, this connection is made at one end of the main cable.
In order to avoid signal reflections, a 120 Ohm termination resistance must be fitted on each end of the main cable. The end resistance must be used only at the ends of the main cable. If the total length of the main cable is less than 50 m termination resistances can be avoided at the ends of the main cable.
Fire safety is another major reason why owners may consider installing a BMS system into their building. High performance fire survival cables provide an excellent solution for connecting BMS with fire systems. The data and coaxial ranges are designed to carry on functioning in the event of a fire and provide vital signals to voice alarm, CCTV and allow systems to be shut down in an orderly fashion. Meeting specific fire resistance requirements.

Wednesday, July 10, 2019

System Integration for High-rise Buildings

System Integration for High-rise Buildings

Integrated systems, or systems integration (SSA – Security Safety Automation), is the process of bringing together component sub-systems into one functional system. It provides a system with coherence by making the parts or components work together, or 'building or creating a whole from parts.

A component means HVAC / VRV, Plumbing, Fire Fighting with Detection, Electrical Systems, Lifts, elevators, Intrusion Alarm, Access Control, UPS & Lighting Automation etc. The result of integration creates BMS.  The powerful combination of open systems protocols and a scalable platform means the BMS can help support growth and expansion of the system in the future. So Building Automation System (BAS) or Building Management System (BMS) is the automatic centralized control of a building's heating, ventilation and air conditioning, lighting and other systems through a building management system or building automation system. The objectives of building automation are improved occupant comfort, efficient operation of building systems, and reduction in energy consumption and operating costs, and improve life cycle of utilities. The Building Automation System (BAS) core functionality is to keep building climate within a specified range, light rooms based on an occupancy schedule, monitor performance and device failures in all systems and provide malfunction alarms. Automation systems reduce building energy and maintenance costs compared to a non-controlled building.
Now we consider a building having 62 floors height is 268 meters (The 42 is a residential skyscraper in Kolkata in the state of West Bengal in India.) tower that is technically advanced, sustainable, and forward-looking. Designed by Hafeez Contractor Architect. Excerpts from the mechanical, electrical, plumbing (MEP), communications, security, and sustainable design specification sections for that building are provided below. For our reader this is just an examples, we are not confirm reality of System integration at “The 42”.

Mechanical
Chilled water:
The building’s cooling will be provided by offsite district chilled-water production plants via pipe connections from street distribution to the energy-transfer room located at the lower level.

Heating systems:

  •        Electric-resistance heating coils will be provided with each dedicated outside air handling unit, as well as each amenity and lobby air handling unit.
  •          Electric-resistance baseboard heaters will be provided along perimeter windows and walls for the ground-floor lobby and at all floors with perimeter glazing higher than 9-ft 6-in.
  •      Baseboard heaters will be interlocked with the fan-powered box serving the respective perimeter area.
  •       Electric-resistance baseboard heaters along perimeter windows and walls for ground-floor retail areas will be provided by the tenants. Baseboard heaters shall be interlocked with the respective air conditioning units provided by the tenants.
Air conditioning
·    Four factory-packaged dedicated outside-air units will be provided in the Level 20 mechanical room to provide minimum code-required ventilation air to all of the typical office floors.
  •         Conference center and fitness area: Variable-volume factory package units will be provided in the mezzanine space above the Level 2 locker room and toilet space to serve the conference center and fitness areas.
  •         Ground-floor lobby: A variable-volume factory package unit will be provided in the basement level to serve the entrance lobby and lounge.

Duct distribution systems
Perimeter offices and interior offices will be supplied from separate variable air volume series flow-fan-powered boxes, system pressure-independent direct digital control (DDC) by the building automation system (BAS) or Building Management System (BMS), low leakage and low-pressure drop for space-temperature control. Perimeter fan-powered boxes will include electric heating coils for envelope heat.

DDC/BAS network, communication, and software
  •   The DDCs and BAS shall provide central control and monitoring of major HVAC equipment. The DDC/BAS will consist of two tiers or levels of networks.
  •    The first-tier network shall provide connectivity between all DDC network controllers (B-BC), the BAS server, and dedicated BMS operator workstations. It shall be Ethernet-based and shall serve as a backbone for all base building technology systems. A virtual local area network (VLAN) may be portioned by the owner and dedicated for BMS communications.
  •    The second-tier networks shall provide communications from each DDC network controller (B-BC) to all DDC controllers, variable-speed drives, equipment-mounted controllers, and other smart field devices.
  •    The BAS shall have custom graphical displays to monitor the operation of HVAC equipment connected to the BAS. User displays shall also include floor plans. Graphical displays shall be submitted electronically to the client and the engineer for review.
  •    Each DDC shall connect to a communication network for central monitoring, remote override, setpoint adjustment, history collection to archive, and alarm annunciation. The BAS shall be capable of generating both advisory and critical alarm-notification messages via email to the designated recipients as determined by the client. Each DDC shall monitor and control the associated HVAC unit in a stand-alone configuration, independent of any other DDC.

BMS hardware features 
All BMS network communications shall use a physical layer of Ethernet and EIA-485. Ethernet cabling will be provided by structured cabling. EIA-485/twisted pair cabling shall be provided by the DDC contractor.

Electrical Systems
Electric service
  •          Primary distribution: Service feeders, originating from separate networks, to the project via underground concrete-encased duct banks. These duct banks shall enter into a utility-owned main-line switching station and transformer vault located in the basement level.
  •          Secondary distribution: The building shall be provided with service entrance switchboard rooms and vertically aligned branch electrical closets strategically located to provide an efficient and economical distribution of wiring systems throughout the facility.
Lighting
  •          Provide lighting systems for base building lobbies; electrical, telephone, mechanical, and elevator equipment rooms; parking; service areas; corridors; stairways; toilets; storage rooms; dock area; elevator pits; supply and recirculation fan plenums; roof hatches; exit signs; etc. The lighting system shall be complete with fixtures, ballasts, drivers, lamps, branch circuits, and controls to interface with BMS and accessories.
  •          Daylighting and shade controls.
Plumbing
Domestic cold water
  •          Provide dual domestic water services connected to the water main in the street per the local water department’s requirements and route into the building’s dedicated pump room.
  •       Provide and install domestic-water service, water meters, and all associated valves on the water services as required by the City and a branch with water line with a double-detector check-valve assembly for continuation by the fire protection contractor.

Storm water system
  •         Furnish and install roof drains at all roofs along with the interior drainage system and downspouts for a complete operable storm water system.
  •          All storm/waste piping, above grade level, shall be connected to a gravity storm sewer. Collect all storm piping and route to the storm detention structure included with overflow. The civil engineer will continue the sewer from that point.

Fire Protection
NFPA 13 apply for High rise building,
Standpipe system
  •          A standpipe system shall be provided for the new proposed high-rise building.
  •      The water supply for the combination sprinkler and standpipe riser shall be hydraulically calculated to supply a residual pressure of 65 psi at the top most outlets, with a flow rate equal to 250 gpm plus actual sprinkler system demand but not less than 500 gpm approx. Through the flow switch BMS get data.

 Automatic sprinkler system
  •      A supervised automatic sprinkler system shall be installed throughout the entire premises, except in dedicated electrical transformer rooms, dedicated main-building switchboard rooms, dedicated electrical closets or rooms where voltage exceeds 600 V, base building life safety emergency generator rooms, elevator shafts, and elevator machine rooms.

Fire Detection
Most fire alarm systems on the market today have the capability to output fire alarm signals over BACnet protocols. This is accomplished via a BACnet gateway that allows the fire alarm system to output signals to third-party equipment as BACnet objects. The third-party equipment can be configured to read and react to data received from the gateway. In order to ensure life safety is not impacted by any integrated non-fire system, a listed barrier gateway, integral with or attached to each control unit or group of control units, as appropriate, must be provided to prevent the other systems from interfering with or controlling the fire alarm system.

The BACnet interface is a standalone piece of fire alarm equipment, so it is constantly online and goes offline only if it loses both primary and backup power, or if it is being serviced. Therefore, there is no downtime or signal restoration necessary when the fire alarm system is reset. If any of the fire alarm points that are being supervised by the gateway change state at any time, the BACnet gateway will automatically change the status of the BACnet objects associated with those points.

Communications
Spaces and Pathways
  •     Spaces—TEF: Two separate telecommunications entrance facilities will be located on the basement level. These are small rooms where the telecommunications service providers will transition their outside-plant cabling to indoor-rated cabling and shall bond the cable sheaths. Multiple service providers may enter the building via the same TEF. They will each be given proportioned wall space to place their splice equipment.
  •      Pathways—incoming services: conduits from the property line are specified for incoming serve to each of the two TEF rooms.

Structured Cabling
Backbone
  •      Vertical fiber backbone: One 12-strand OM4 multimode fiber-optic cable will be provided from telecommunications room to every 5 floors as well as the basement.
  •        This backbone is for the building’s network and other systems the building wishes to deploy. It will allow the IP devices (BAS controllers, lighting controllers, security-access control panels, security cameras, etc.) on each group of three floors to connect to the building LAN access switch.
  •          There may be a consideration for additional single-mode fiber-optic cabling if it is required to support a distributed antenna system implementation.

Data Network
The data network provides the delivery of information services throughout the building. The data network is a single, unified physical network that is comprised of several independent logical networks. A wide variety of network-enabled devices use the data network utility to send and receive information. A device’s ability to communicate with other devices is governed by the security policies that are implemented throughout the data network. By designing and implementing the data network to be flexible and adaptive, this reduces the management and operational expense of reconfiguration once the network is installed.
The systems/devices that will use the unified data network include the following:
  •        Security (access control, video surveillance, visitor management, intercom).
  •        Building control systems (integrated automation system (IAS), BAS, lighting/shade controls, elevator controls).
  •        Audio/video (digital signage, background music, control system).
  •         Wireless.
  •        User devices (PCs, phones, printers, multifunction devices).
  •        Servers.

Voice system
The main voice system will be completely Voice over Internet Protocol, with voice servers residing in the hosted offsite. The voice system shall have a redundant voice server with automatic failover capabilities.

Distributed antenna system
The building will deploy a DAS that will provide cellular enhancement for multiple wireless carriers over a common infrastructure. It also will allow for two-way radios used by building operations staff to utilize the same infrastructure.

Security system
General description
System purpose: The security system is designed to control authorized access and prohibit unauthorized access to private or restricted spaces and to record access events for later investigation or audit purposes. The security system will consist of card-reader access control, Boom barrier / Flap Gate, visitor management, intercom, and security camera subsystems. Duress- or panic-alarm systems and intrusion-alarm systems are not included.

Access Control System (ACS)
The purpose of the ACS is to control authorized access and prohibit unauthorized access to private or restricted spaces and to record access activity for later investigation or audit purposes. The ACS will consist of card readers, data-gathering panels, door controls/sensors, and door alarms.

Visitor Management System (VMS)
·         The purpose of the VMS is to register and log visitors, print badges, track visitors, and provide reports.
  •        The VMS will consist of a standard PC with a camera and badge printer for lobby reception desk use and a stand-alone kiosk for visitor self-registration.
  •          The system will be able to register and log visitor information.
  •          The VMS shall issue visitor credentials (“digital credentials”) to mobile devices to allow those devices to allow access via turnstiles and at elevators based on specific access-authorization rights per tenant.

Video Surveillance System (VSS)
The purpose of the security camera system is to augment the ACS by providing a means to remotely assess activity at access points and to record video images of activity at those locations for later investigation or audit purposes. Not mandatory to use same display with BMS. The security camera system will consist of IP cameras and a network video recorder (NVR).
  •        NVRs will have a TCP/IP network interface for control and operation.
  •        All camera monitoring, playback, and control will be via standard web browser interface.
  •        Personnel with proper system authorization will be able to access live and/or recorded video from desktop PCs. Video verification; “see” what camera “saw” is most valuable part in high rise building. Not mandatory to install AI based Costly video analytics software.
  •        The cameras will be high-resolution color cameras. Additional camera features, such as low-light capability and wide dynamic range, will be provided with specific cameras where those features will be necessary to provide a quality image.

Smart buildings need to meet the expectations of the occupant and technologies must work together flawlessly to provide a personalized experience, now for the security integrator, the key is how do you create an integrated security framework that allows that customer to benefit from that data? To execute this doesn’t look back your cost, find good services, good OEM with quality product & good SI or SSA Integrate Company.

Ref:
http://bhadrafiresafety.blogspot.com/2019/02/nfpa-13-in-high-rise-buildings.html

If you found this artical is gain your knowledge then you can donate some amount through below bank details:-
A/C Name: Arindam Bhadra
A/C no: 19251050015468.
Name of Bank: HDFC BANK.
Branch: Belgharia.
RTGS/NEFT IFSE: HDFC0001925
Your support is highly appreciated to continue / maintain this blog.