Showing posts with label CAT-6 and CAT6e 550M to 1000M. Show all posts
Showing posts with label CAT-6 and CAT6e 550M to 1000M. Show all posts

Saturday, September 21, 2019

Difference between Ethernet cables ?

Difference between Ethernet cables?

Not all Ethernet cables are the same, so what is the difference, and how do you know which you should use? In this short guide we take a look at the technical and physical differences between the Ethernet cables available on broadband buyer.

Ethernet cables are grouped into sequentially numbered categories (e.g CAT5) based on different specifications; sometimes the category is updated with further clarification or testing standards (e.g. CAT5e, CAT6a). These categories are how we can easily know what type of cable we need for a specific application. For our IP Surveillance ( IP Camera, Access Control, BAS, Intrusion ... etc) CAT6 is recommended to install, including PoE based design. 

Manufacturers are required to adhere to the standards which makes our lives easier.

CAT Technical differences

The difference in Ethernet cable specification is not as easy to see as physical changes; so let’s look at what each category does and does not support. Below is a chart for reference when picking cable for your application based on the standards for that category.

Difference between Ethernet cables
Length
10Mb/s
100Mb/s
1GbE
10GbE
PoE
Mhz
CAT5
100
Y
Y
Y
100
CAT5e
100
Y
Y
Y
Y
100
CAT6
100 (55 for 10GbE)
Y
Y
Y
Y
Y
250
CAT6a
100
Y
Y
Y
Y
Y
500

You may notice that as the category number gets higher, so does the speed and Mhz of the wire. This is not a coincidence, because each category brings more stringent testing for eliminating crosstalk (XT) and adding isolation between the wires.

Category 5 cable was revised in 2001, and mostly replaced with Category 5 Enhanced (CAT5e) cable which did not change anything physically in the cable, but instead applied more stringent testing standards for crosstalk. Category 6 was revised between 2002 with Category 6 Augmented (CAT6a) in 2008 that provided testing for 500 Mhz communication (compared to CAT6 - 250 Mhz). The higher communication frequency eliminated alien crosstalk (AXT) which allows for longer range at 10 GB/s.

Physical Differences

So how does a physical cable eliminate interference and allow for faster speeds? It does it through wire twisting and isolation. Cable twisting was invented by Alexander Graham Bell in 1881 for use on telephone wires that were run along side power lines. He discovered that by twisting the cable every 3-4 utility poles, it reduced the interference and increased the range. Twisted pair became the basis for all Ethernet cables to eliminate interference between internal wires (XT), and external wires (AXT).


There are two main physical differences between CAT5 and CAT6 cables, the number of twists per cm in the wire, and sheath thickness.

Cable twisting length is not standardised but typically there are 1.5-2 twists per cm in CAT5(e) and 2+ twists per cm in CAT6. Within a single cable, each colored pair will also have different twist lengths based on prime numbers so that no two twists ever align. The amount of twists per pair is usually unique for each cable manufacturer.

Many CAT6 cables also include a nylon spline which helps eliminate crosstalk. Although the spline is not required in CAT5 cable, some manufacturers include it anyway. In CAT6 cable, the spline is not required either as long as the cable tests according to the standard.


The nylon spline helps reduce crosstalk in the wire, with the thicker sheath protecting against Near End Crosstalk (NEXT) and Alien Crosstalk (AXT), which both occur more often as the frequency (Mhz) increases. In this picture below, the CAT5e sheath has the thinnest sheath versus CAT6 but it also was the only one with the nylon spline.
Shielded (FTP) vs. Unshielded (UTP)
Because all Ethernet cables are twisted, manufacturers use shielding to further protect the cable from interference. For example, Unshielded Twisted Pair (UTP) can easily be used for cables between your computer and the wall but you will want to use Foil Shielded Cable (FTP) for areas with high interference and running cables outdoors or inside walls.
There are different ways to shield an Ethernet cable, but typically it involves putting a shield around each pair of wire in the cable. This protects the pairs from crosstalk internally. Manufacturers can further protect cables from alien crosstalk with additional cable shielding beneath the sheath. The diagram below shows the different types of Ethernet shielding and the codes used to differentiate them.

Tuesday, December 13, 2011

Distributing Video Over CAT 5 and CAT 7

Some SI Need to Know About Video Distribution Through Cat5 or Cat7


When thinking of setting up your home video system, it means that you should know something about distributing video over CAT5 and CAT7 because it is the kind of system that will broadcast optimum performance. It also means that you can now have your source from a distance away from the display device, television or monitor.
There are three (3) general types of video distribution system:
1) Analog or Baseband
2) Internet Protocol
3) Radio Frequency

Any of these types may use coaxial cables, category 5 or more commonly known as CAT5 cables, CAT5e, CAT6, CAT6e or CAT7 cables. What are the differences between them?
1) CAT-5 distributes video up to 100M.
2) CAT-5e 350M.
3) CAT-6 and CAT6e distributes video as far as 550M to 1000M
4) CAT-7 is rated from 700M to 1000M.

Viewing Video Over CAT5 or CAT7
Video over CAT5 or CAT7 like those delivered by CATV, data, and telephone are all distributed in similar wiring closets. It delivers videos that may run along a distance of 100M for CAT 5 or even up to 1000M for CAT7. Video over CAT5 or CAT7 all goes out on the same cabling system. The system is channeled in a passive broadband balun that converts any uneven coaxial signal into a balanced signal through the video over CAT5 or CAT7. Even when distributed to different channels simultaneously, it will not slow down the network because the air analog signals do not travel on that similar network, and thus, it does not rely on the bandwidth of the video signals.
Presently, the use of FTP or UTP cables for audio and video needs is prevalent. Instead of using coaxial cables, CAT5 and CAT7 cables are used. Coax are first installed into the hubs and everything else is distributed through the FTP/UTP. Video over CAT7 or CAT5 for that matter are now possible at a limited cost. There is ease in the installation and location change is not a big deal. All one needs to do is connect patch cords from the distribution hub to the patch panel and have a single port converter connected to the television.

Advantages of a Video System Using CAT5 and CAT7
1) Video over CAT5 or CAT7 is cost effective as it eliminates the need for additional coaxial cables.
2) Configuration of video over CAT5 or CAT7 is much easier than having multiple splitter taps, amplifiers and combiners of coax.
3) A high quality signal is maintained as the distribution system of video over CAT5 or video over CAT7 uses active RF video hubs. It makes automatic slope adjustments hence all video channels’ image quality is sustained.
4) The video distribution system of CAT5 or CAT7 can carry out voice and auxiliary signals simultaneously. There are no interferences between the voice and video data.
5) A system with video over CAT5 or CAT7 allows video streaming from the computer and it is made possible through a broadband video system.
Distributing video over CAT5 and CAT7 is made possible through an RF broadband system. It broadcasts CATV, HDTV, internally generated video, video-on-demand services, and satellite videos through twisted pairs of CAT5 or CAT7 cables.