Showing posts with label VoIP. Show all posts
Showing posts with label VoIP. Show all posts

Saturday, May 6, 2017

SD-WAN can provide Quality of Service over the Internet

SD-WAN can provide Quality of Service (QoS) over the Internet
Organizations have tried to make voice services work over Internet Protocol (IP) network pipes (aka Voice over IP or VoIP), there have been very basic requirements in order to make it operate effectively. The first item needed for IP based voice was a dedicated, business class network line to carry this sensitive traffic. A business class circuit was paramount to reliability and uptime required for a crucial service like voice. This type of network access has low latency characteristics which keeps the amount of time it takes to forward the voice traffic low so that conversations are not made off kilter by long delays. Also absolutely critical to voice over network pipes is an additional layer over these high quality dedicated connections, something called quality of service or QoS. QoS is a suite of bandwidth prioritization and reservation techniques that give select services fast lane access to bypass lesser classifications of traffic and also reserves bandwidth preventing exhaustion of available throughput. Most commonly, QoS is used in tandem with carrier services like an IP VPN or Multi-Protocol Label Switching (MPLS) and have been assumed by many to be the only way to reliably deliver voice services for an organization. I can affirm as a network engineer for the past few decades, this has been the case for most of my career. In order for voice to perform adequately, specific care was required to spec out dedicated pipes with prioritization and if you didn't, you were typically asking for trouble in the way of poor quality, disconnections and general voice issues. That is until a thing called Software Defined Wide Area Networks or SD-WAN came along. This nascent technology space is drastically changing the way we do a lot of things on the wide area network, including managing sensitive real-time protocols that require QoS.

Video quality can suffer if the network can’t meet its high bandwidth needs. Video conferencing can take on many forms and protocols. For enterprises that have experienced problems, such as delay and jitter on voice over IP platforms, you know some platforms are better than others. The big variance in supporting video conferencing requirements is the integrity of traffic over wide-area connections.

Let's take a look at some of the things that make SD-WAN different versus how we've implemented voice over traditional networks up until now. These are items that are truly differentiators from means we used in the past to run network traffic over both tried and true dedicated lines not to mention over the commodity broadband or specifically configured Dedicated Internet pipes.

1.   Multi-Path Steering - SD-WAN can actively forward over multiple lines and is constantly measuring the characteristics and properties of each path available. Because it can very rapidly identify issues like high latency, packet loss and jitter, there are software mechanisms to quickly bypass these issues by utilizing an alternate path on the fly.
2.   Forward Error Correction and/or Packet Duplication - When issues like data loss from dropped packets arise, if there is only one path available or all paths are experiencing loss, that can be a serious issue with traditional networks with little means to remediate. SD-WAN employs features such as Forward Error Correction (FEC) or Packet Duplication which once packet loss is identified on a path, will send duplicates of the same packet to have greater assurance that critical data like voice or video will make it to their destination. At the other side of the SD-WAN connection for that voice or video stream, the first packet received will be sent along and the duplicates will be dropped.
3.   Jitter Buffering - Voice and video quality can suffer from a network condition called "jitter" which is when the information sent over the network is spaced inconsistently leading to a variable tempo for the stream. The result is audio or video that can have gaps, speed up then slow down and generally become impaired. SD-WAN measures the gaps between the packets and can evenly space these packets on the other side providing what is called a "jitter buffer" to realign the timing of these packets to keep the video or audio stream cadence intact.
4.   Prioritization and Queuing over Multiple Paths - Because SD-WAN performs it's queuing and packet forwarding over something called an "overlay", the forwarding decisions for information that has the highest priority and reservation of bandwidth for applications is performed at a layer above the traditional IP interface. With this, a priority "fast pass" can be given to crucial data like voice, video or other business essential apps bi-directionally and this can be done over all paths available.
So as you can see, there are many pieces that come together to make IP based voice over broadband and Dedicated Internet Access (DIA) is now possible. WAN Dynamics has designed many SD-WAN based solutions for customers and has seen it perform in the "real world" so can attest that IT WORKS! 

The following are some of the more prominent examples of reasons for SD-WAN we've been able to assist with to date:
1.   Voice Services Over the Internet - A lot of small to medium sized businesses have started utilizing voice services over commodity broadband connections with no Quality of Service (QoS) in place. Though most of the time this works adequately, there will be many instances of degradation in quality or dropped calls that can be frustrating. This has just been the reality of utilizing the public Internet for voice services... up until now. With SD-WAN, we're able to prioritize voice traffic both inbound and outbound while leveraging multi-path technologies to "route around" carrier backbone problems. We're able to do this with single, stand alone sites in addition to multiple locations.
2.   WAN Visibility and Management - Setting aside the benefits of multi-path link steering, bandwidth aggregation and QoS for a bit, many organizations have no usage breakdowns or application performance visibility in their network today. As a byproduct of the application steering and prioritization baked into most SD-WAN solutions, there is a great deal of reporting functionality available. So now when stakeholders of IT want to know what is happening at their remote locations, they have a graphical interface to see exactly what is happening.
3.   Configuration Uniformity and Standardization - Large organizations which have many sites or will soon have many sites at the hands of rapid growth can have a lot of hands in the IT group working on things. With this, lack of standardization becomes an issue as sites are configured and turned up if there is not a uniform configuration policy. With SD-WAN, attaining a high level of uniformity is simple using features like Zero Touch provisioning and Configuration Profiles to make sure that all sites are configured identically. This also helps greatly for change management if you want to make a configuration update to all of your locations. With this approach, you can update a configuration in one place and push it to all sites, instantaneously. This frees up engineers to solve larger problems facing the business rather than making a minor configuration change on dozens or hundreds of sites.
4.   Remote Diagnostics Capabilities - When there are issues at a remote location, it can often times be difficult to walk users through providing troubleshooting assistance or getting the right software and hardware onsite. With the built in tools into many SD-WAN solutions, the ability to perform packet captures, see network state and what the users see on the network, so that the time vetting issues on the network can be greatly reduced.
5.   MPLS / IP VPN Replacement - MPLS and other dedicated private network infrastructures have begun to outlive their usefulness with many organizations as critical workloads are moved to the cloud. Further, there is growing demand by companies to reduce cost of their expensive WANs that typically have no redundancy or application smarts built in. SD-WAN can easily leverage existing dedicated internet access (DIA) links and even inexpensive broadband connections to build an application aware, private network overlay that provides more applications control, redundancy and critical business application prioritization than traditional network designs.
These are just five examples of things we have been able to help with. We're happily conducting Proof of Concept deployments for businesses to show the value of SD-WAN and finding new use cases all the time.

"By the end of 2019, 30% of enterprises will have deployed SD-WAN technology in their branches, up from less than 1% today."

Saturday, April 30, 2011

TCP VS UDP & IP Topics

Can you explain the difference between UDP and TCP internet protocol (IP) traffic and its usage with an example?
A. Transmission Control Protocol (TCP) and User Datagram Protocol (UDP)is a transportation protocol that is one of the core protocols of the Internet protocol suite. Both TCP and UDP work at transport layer TCP/IP model and both have very different usage.

Difference between TCP and UDP

TCP
UDP
Reliability: TCP is connection-oriented protocol. When a file or message send it will get delivered unless connections fails. If connection lost, the server will request the lost part. There is no corruption while transferring a message.
Reliability: UDP is connectionless protocol. When you a send a data or message, you don't know if it'll get there, it could get lost on the way. There may be corruption while transferring a message.
Ordered: If you send two messages along a connection, one after the other, you know the first message will get there first. You don't have to worry about data arriving in the wrong order.
Ordered: If you send two messages out, you don't know what order they'll arrive in i.e. no ordered
Heavyweight: - when the low level parts of the TCP "stream" arrive in the wrong order, resend requests have to be sent, and all the out of sequence parts have to be put back together, so requires a bit of work to piece together.
Lightweight: No ordering of messages, no tracking connections, etc. It's just fire and forget! This means it's a lot quicker, and the network card / OS have to do very little work to translate the data back from the packets.
Streaming: Data is read as a "stream," with nothing distinguishing where one packet ends and another begins. There may be multiple packets per read call.
Datagrams: Packets are sent individually and are guaranteed to be whole if they arrive. One packet per one read call.
Examples: World Wide Web (Apache TCP port 80), e-mail (SMTP TCP port 25 Postfix MTA), File Transfer Protocol (FTP port 21) and Secure Shell (OpenSSH port 22) etc.
Examples: Domain Name System (DNS UDP port 53), streaming media applications such as IPTV or movies, Voice over IP (VoIP), Trivial File Transfer Protocol (TFTP) and online multiplayer games etc

Further readings

UDP is the faster protocol as it doesn't wait for acknowledgement so it is not at all having reliability as  compared to TCP.

Bridging the Analog-IP Gap

The name "encoder" does not really do these technological miracles justice. These investment-protecting, budget-saving marvels build a bridge between two generations of surveillance technology and bring harmony to your network.

IP-based video surveillance systems bring many important benefits. The image quality they deliver is a vast improvement. The networks are more scalable and cheaper to run. Better still, computerization means you can automate systems to bring about event management and intelligent video. Nevertheless, it is too early to claim that this development has rendered analog CCTV surveillance systems obsolete.

One option to installers would be to replace everything analog. This would mean getting rid of the existing analog cameras, the coaxial cables that have been laid inside and outside the buildings, the recording systems (AVRs or DVRs) and the management system. It would then be necessary to introduce an entirely new Ethernet cabling infrastructure, which would involve not insubstantial disruption, along with new IP-compatible storage hardware and a management system suited to IP or network video.

In many cases, that would be a waste of time and money, and the people who bought analog systems are not going to write off their investment any time soon, especially when around 95 percent of the estimated 40 million surveillance cameras installed in the world are still analog.

While analog technology is being fast eclipsed by IP video, which is growing at 30 percent a year according to IMS Research, there is no reason why the two infrastructures cannot be rationalized together, apart from a few technological hurdles. These barriers to integration are, in most cases, easily surmountable.

For most installations, the most valuable service you can offer your clients is to migrate them from analog to IP video by making judicious use of their existing network. The key to this magic passage is the video encoder. Encoders help convert analog networks into IP-friendly formats, putting the existing investment in cameras and coaxial cable to good use.

Sunday, February 14, 2010

Burglar (or intrusion) Alarm System

Burglar (or intrusion), fire, and safety alarms are electronic alarms designed to alert the user to a specific danger. Sensors are connected to a control unit via low-voltage wiring or a narrowband RF signal which is used to interact with a response device. The most common security sensors are used to indicate the opening of a door or window or detect motion via passive infrared (PIR). New construction systems are predominately hardwired for economy. Some installations often use wireless systems for a faster, more economical installation. Some systems serve a single purpose of burglar or fire protection. Combination systems provide both fire and intrusion protection. Systems range from small, self-contained noisemakers, to complicated, multi-zoned systems with color-coded computer monitor outputs. Many of these concepts also apply to portable alarms for protecting cars, trucks or other vehicles and their contents (i.e., "car alarms"). See also fire alarm control panel for specific fire system issues. Burglar alarms are sometimes referred to as alarm systems, see burglar alarm control panel for a discussion of hard-wired burglar alarm system design.
Burglar alarms (or perimeter detection systems, Perimeter protection, intrusion detection systems and many more terms for the same thing) are divided to two main fields: home burglar alarms and industrial burglar and perimeter intrusion detection.

Intruder Panel
These are reliable and easy to use and offers enhanced fire detection and external lighting control facilities, conforming to CE specification directives and BS4737 standards.

The salient features are:
8 Zones - Each zone is separately identified on the keypad and provides ample security detection for most domestic properties.
Burglar Alarm Zone, in general terms represent an area or collection of sensors that protect an area. Zones allow to pinpoint the area from where the alarm got initiated, otherwise one has to use guess-work & check all doors & windows for intrusion. In large premises, such a feature is very desirable, though it increases the cost. Make sure that your Central Control Panel can be expanded (or has built-in flexibility) to meet your future needs or you may be faced with replacing the control Panel when you want to add devices.Lets look at a typical zone layout for a control panel so that you can understand the way it is wired and programmed works.
ZONE 1 – (DELAY): This zone is where the doors from which most often enter and exit are. When you turn your alarm on, the exit delay will start a timer (programmed to your specifications, if requested) allowing you time to get out. Once the exit time has expired, (usually about 30-60 seconds.) the alarm will be in the on or “armed” condition.
When you return to your home or business and enter through the delay doors, an entry timer begins. This timer is usually set at about 15-30 seconds. You do not want to have a long entry time as a burglar entering through a delay zone has the same amount of time in your protected area before the alarm goes off. During this time you would go to the nearest keypad and enter your code to turn your alarm off.
In the Know!
The doors have chime feature that can easily be turned on or off. Most people elect to leave this feature on all this time, so that they can hear a tone when the alarm is off and someone enters.
ZONE 2 – (INSTANT PERIMETER): This zone would be for other than delay doors. The back yard door and the master bedroom to deck doors and good examples of these types of doors. There is no delay time timer on these doors and when the alarm is on and entry is made the alarm will go off instantly.
ZONE 3 – (INTERIOR): This zone is for your motion detector on the main floor. When you enter through a delay door the motion will delay also, giving you the ability to get to the keypad turn off or “disarm” your system. If you do not enter through a delay door first and the motion sees you it will go into an alarm condition instantly. When you are staying home or arming your business system without leaving, you can arm your interior zone or zones allowing you to move around without restrictions while still having your perimeter secured.
ZONE 4 – (INTERIOR): This zone is for your windows if your house is in Ground Floor and for the customers those who are asking selectively arm or disarm certain doors / windows to protect the particular zone specifically.
Types of ZonesZones fall in various categories depending upon kind of response desired e.g. medical, burglary, and panic. Each type of device could have a specific activation, alarm and response procedure. Some examples of zone are: Hold-up zones can be audible or silent but are always active. You may choose either or both. Audible hold-up can be used to "scare' away prowlers but care must always be exercised when activating hold-up devices since there is no way of predicting the action an intruder may take when he hears the alarm or when the police arrive. By connecting to an Auto Dialer the control panel can 'silently' call for help.
Burglary devices fall into various categories, 24 hour (always active), main entry door, and interior (motion detectors) etc. While going away, you will like to monitor the premises on 24 hours basis. Whereas, if you are at home, you might like to arm (activate) the external doors & windows but not PIR's which monitor the interior. You may also want to selectively arm or disarm certain doors / windows.
Information Input
Advanced Burglar Alarm control panels have displays that may be LCD (liquid crystal display) based or simple LED lights. They can prompt you for the required data, such as Enter Code when the system is activated and provide a clear visual indication of the system status. Some systems also give audible beeps depending upon if the input has been accepted by the system or not.Most of the systems have built-in checks to verify the authenticity of the person entering inputs. The key-pad based system requires the user to enter correct password to perform any function. By giving the password to near & dear ones, the need to have multiple keys is not these. Also, key protection & control could be a problem in case there are many authorized 'individuals'
3 Part Set Programs - Allows three programmed setting levels dependent on the people in the property or the level of protection required.
Simple Set Readers for Ease of Operation - Up to 4 stylish readers can be used to set/unset the system using a proximity keyfob.
Personal Attack Facility - Any number of PA buttons may be set to activate the system in an emergency.
Remote Keypads for added Flexibility - Up to four keypads can operate the system from any point in the property.
Input for Remote Keyswitch or Push to Set Switch - A remote keyswitch or push can be used to set or unset the system.
Fire Zone - Any number of zones can be programmed as a fire zone. Two types are available: Standard Fire - operated only whwn system has been set; 24 hour - operates all the time.
Lighting Control Feature - Full manual and automatic control over security lightng.
Duress Code - Allows the user to unset the system and silence the alarm under duress, using a second code that will communicate an alarm to an alarm receiving center.
Chime - Can be used to select a low security chime alarm for various areas of the protected area, even when the main alarm is turned off.
Built-in tamper control.

Indoor
These types of sensors are designed for indoor use. Outdoor use would not be advised due to false alarm vulnerability and weather durability.

Motion detector
A motion detector is a device that contains a physical mechanism or electronic sensor that quantifies motion that can be either integrated with or connected to other devices that alert the user of the presence of a moving object within the field of view. They’re a vital component of comprehensive security systems, for both homes and businesses.
An electronic motion detector contains a motion sensor that transforms the detection of motion into an electric signal. This can be achieved by measuring optical or acoustical changes in the field of view.
A motion detector connected to a burglar alarm that is used to alert the home owner or security service after it detects motion. Such a detector may also trigger a red light camera.
An occupancy sensor is a motion detector that is integrated with a timing device. It senses when motion has stopped for a specified time period in order to trigger a light extinguishing signal. These devices prevent illumination of unoccupied spaces like public toilets.
There are basically three types of sensors used in motion detectors spectrum.
• Passive Infrared sensors (PIR)
o Looks for body heat. No energy is emitted from the sensor.
• Ultrasonic (Active)
o Sensor sends out pulses and measures the reflection off a moving object.
• Microwave (Active)
o Sensor sends out microwave pulses and measures the reflection off a moving object. Similar to a police radar gun.

Passive infrared detectors
The passive infrared detector (PIR) is one of the most common detectors found in household and small business environments because it offers affordable and reliable functionality. The term passive means the detector is able to function without the need to generate and radiate its own energy (unlike ultrasonic and microwave volumetric intrusion detectors that are “active” in operation). PIRs are able to distinguish if an infrared emitting object is present by first learning the ambient temperature of the monitored space and then detecting a change in the temperature caused by the presence of an object. Using the principle of differentiation, which is a check of presence or nonpresence, PIRs verify if an intruder or object is actually there. Creating individual zones of detection where each zone comprises one or more layers can achieve differentiation. Between the zones there are areas of no sensitivity (dead zones) that are used by the sensor for comparison.
The salient features of the range of movement detectors are as follows:
Look Down Technology - Dual lookdown zones are employed to ensure that even the most determined intruder will be detected.
NC/NO Selectable Outputs - Products are fitted with changeover relays to ensure compatibility with all requirements.
White Light Filter Lens - To minimize any possibility of problematic alarms due to fluorescent / environmental conditions.
Intelligent Pulse Counts - Reduces the possibility of false alarms caused by environmental and power line interference.
Sealed Optics - The sensor element is sealed, to prevent unwanted small insects form accessing the sensor area.

Dual-technology motion detectors
Many modern motion detectors use a combination of different technologies. These dual-technology detectors benefit with each type of sensor, and false alarms are reduced. All companies have the option to use PIR/Microwave Motion Detectors that have "Pet-Immune" functions which allow the detector to ignore pets that weigh up to 80 pounds. Placement of the sensors can be strategically mounted so as to lessen the chance of pets errantly activating alarms.
Often, PIR technology will be paired with another model to maximize accuracy and reduce energy usage. PIR draws less energy than microwave detection, and so many sensors are calibrated so that when the PIR sensor is tripped, it activates a microwave sensor. If the latter also picks up an intruder, then the alarm is sounded.n it is also used in burglar alarm. As interior motion detectors do not ‘see’ through windows or walls, motion-sensitive outdoor lighting is often recommended to enhance comprehensive efforts to protect the property.

Panic Button
Panic buttons are targeted and rapid mode of contact used primarily by sick and old people to contact their care takers at times of distress or during emergency situations. It offers either visual or acoustic signaling. The signals can also be routed to the wireless devices carried by their caregivers, enabling a fast and quick response. This system typically consists of a main communicator panel and the multiple points connected to it.

Ultrasonic detectors
Using frequencies between 25 kHz and 75 kHz, these active detectors transmit ultrasonic sound waves that are inaudible to humans. The Doppler shift principle is the underlying method of operation, in which a change in frequency is detected due to object motion. This is caused when a moving object changes the frequency of sound waves around it. Two conditions must occur to successfully detect a Doppler shift event:
• There must be motion of an object either towards or away from the receiver.
• The motion of the object must cause a change in the ultrasonic frequency to the receiver relative to the transmitting frequency.
The ultrasonic detector operates by the transmitter emitting an ultrasonic signal into the area to be protected. The sound waves are reflected by solid objects (such as the surrounding floor, walls and ceiling) and then detected by the receiver. Because ultrasonic waves are transmitted through air, then hard-surfaced objects tend to reflect most of the ultrasonic energy, while soft surfaces tend to absorb most energy.
When the surfaces are stationary, the frequency of the waves detected by the receiver will be equal to the transmitted frequency. However, a change in frequency will occur as a result of the Doppler principle, when a person or object is moving towards or away from the detector. Such an event initiates an alarm signal. This technology is considered obsolete by many alarm professionals, and is not actively installed.

Microwave detectors
This device emits microwaves from a transmitter and detects microwaves at a receiver, either through reflection or reduction in beam intensity. The transmitter and receiver are usually combined inside a single housing (monostatic) for indoor applications, and separate housings (bistatic) for outdoor applications.
By generating energy in the microwave region of the electromagnetic spectrum, detector operates as an active volumetric device that responds to:
• A Doppler shift frequency change.
• A frequency phase shift.
• A motion causing reduction in received energy.

Photo-electric beams
Photoelectric beam systems detect the presence of an intruder by transmitting visible or infra red light beams across an area, where these beams maybe obstructed. To improve the detection surface area, the beams are often employed in stacks of two or more. However, if an intruder is aware of the technology’s presence, it can be avoided. The technology can be an effective long-range detection system, if installed in stacks of three or more where the transmitters and receivers are staggered to create a fence-like barrier. Systems are available for both internal and external applications. To prevent a clandestine attack using a secondary light source being used to hold the detector in a ‘sealed’ condition whilst an intruder passes through, most systems use and detect a modulated light source.

Glass break detectors
A glass break detector is a device that detects a break in a pane of glass, alerting a burglar alarm. If it detects broken glass, and the alarm is set, then it sets off the alarm.
It used for internal perimeter building protection. When glass breaks it generates sound in a wide band of frequencies. These can range from infrasonic, which is below 20 Hertz (Hz) and can not be heard by the human ear, through the audio band from 20 Hz to 20 kHz which humans can hear, right up to ultrasonic, which is above 20 kHz and again cannot be heard. Glass break acoustic detectors are mounted in close proximity to the glass panes and listen for sound frequencies associated with glass breaking. Seismic glass break detectors are different in that they are installed on the glass pane. When glass breaks it produces specific shock frequencies which travel through the glass and often through the window frame and the surrounding walls and ceiling. Typically, the most intense frequencies generated are between 3 and 5 kHz, depending on the type of glass and the presence of a plastic interlayer. Seismic glass break detectors “feel” these shock frequencies and in turn generate an alarm condition.
Acoustic Glassbreak Detectors employ a microphone, which "listens" for the sound(s) created by breaking glass. These sounds are typically recorded, digitized and then compared to a library of other sounds/events to determine if in fact glass was broken or a false alarm occurred.
There are several types of window break detectors, one kind detects the vibrations of the window, and if the vibrations get too high/ the window breaks the alarm goes off. Basically the device tells whether or not the window is broken by measuring the vibrations. Another kind detects the noise of glass breaking.

Magnetic Door Contact
Magnetic Door Contact detectors identify intruders by using a magnet and reed switch mechanism. The reed switches are electrical contacts held open by the presence of a magnet. When a magnet attached to an opening door moves away from the reed switches in the alarmed sensor, the switches make contact with each other and trigger a radio frequency (RF) transmission to the system control panel. Information in the RF transmission identifies the type and location of the sensor.
Magnetic Door Contact Detectors can be surface-mounted or recessed. Absence of any external wiring provides the installer with unlimited scope to place the device in positions where it is hidden from view. The detector is a truly stand alone module containing the low power viper integrated circuit, identification and encoding electronics, scantronic transmitter, integral aerial and battery.
Salient features include:
Simple calibration
Exclusive double knock facility at point of attack
Wire free
Scantronic 4600 series compatible
Adjustable detection sensitivity
Fully approved transmitter
Integral magnetic door contact

LPG Gas Detector
LP gas (butane or propane) is the most common type of fuel used for cooking and heating worldwide. LPG leak can cause devastating explosions and consequences of a gas leak in both domestic and commercial situations are every bit as disastrous as those of a fire and can be avoided with the fitting of easy to use and cost effective detection equipment.
Feature and Benefits are as follows:
Officially approved to BS7348 (The British Standards for Domestic Gas Detectors).
Proven semiconductor sensor technology.
230Vac or 12Vds versions.
Relay output models are available.
Suitable for home, caravan and commercial use.
Easy to install and use with no maintenance.

Smoke, heat, and carbon monoxide detectors
Smoke Detectors provide the earliest practicable fire detection and warning. This system consists of smoke or heat detectors at designated locations, to detect smoke or heat at the earliest during any outbreak of fire. The various types of detectors used in this system are Photoelectric, Heat and Multisensing. The detectors are selected based on certain pre-determined parameters. On sensing fire the system initiates a warning alarm, thereby alerting the occupants.
Most systems may also be equipped with smoke, heat, and/or carbon monoxide (CO) detectors. These are also known as 24 hour zones (which are on at all times). Smoke detectors and heat detectors protect from the risk of fire and carbon monxide detectors protect from the risk of carbon monoxide.

Auto Dialer
The communicator / auto dialer is pre programmed to place 4 automatic calls to any pre set destinations, which could include the owner, other two important numbers and one to the Central Monitoring System (CMS).
The salient features are:
Up to four keypads per control panel
Full LCD status indication
Illuminated keys
On-board PA facility Entry / exit tones
Programmable user strings
Programmable backlight options for keypad and LCD display.

Outdoor
These types of sensors would be found most of the time mounted on fences or installed on the perimeter of the protected area.

Vibration (shaker) or inertia sensors
These devices are mounted on barriers and are used primarily to detect an attack on the structure itself. The technology relies on an unstable mechanical configuration that forms part of the electrical circuit. When movement or vibration occurs, the unstable portion of the circuit moves and breaks the current flow, which produces an alarm. The technology of the devices varies and can be sensitive to different levels of vibration. The medium transmitting the vibration must be correctly selected for the specific sensor as they are best suited to different types of structures and configurations.
More sophisticated sensors use piezo-electric components rather than mechanical circuits, which can be tuned to be extremely sensitive to vibration. These sensors are more durable and more resistant to tampering.
• pros: Very reliable sensors, low false alarm rate and middle place in the price range.
• cons: Must be fence mounted would be the main con. Its rather high price deters many customers, but its effectiveness offsets its high price.
The Salient feature are as follows:
Removable Electronics
Non gravity dependent
Dual memory LED and relay
Walk test facility
Remote rest
Dual stage sensitivity
Sensitivity potentiometer
LED lens relay auto resets
Surface mount technology
Anti condensation base
Door contact option
Double knock link

Passive magnetic field detection
This buried security system is based on the Magnetic Anomaly Detection principle of operation. The system uses an electromagnetic field generator powering with two wires running in parallel. Both wires run along the perimeter and are usually installed about 5 inches apart on top of a wall or about foot buried in the ground. The wires are connected to a signal processor which analyzes any change in the magnetic field.
This kind of buried security system sensor cable could be buried on the top of almost any kind of wall to provide a regular wall detection ability or be buried in the ground.
• pros: Very low false alarm rate, can be put on top of any wall, very high chance of detecting real burglars.
• cons: Cannot be installed near high voltage lines, radars, or airports.

E-field
This proximity system can be installed on building perimeters, fences, and walls. It also has the ability to be installed free standing on dedicated poles. The system uses an electromagnetic field generator powering one wire, with another sensing wire running parallel to it. Both wires run along the perimeter and are usually installed about 800 millimetres apart. The sensing wire is connected to a signal processor that analyses:
• amplitude change (mass of intruder),
• rate change (movement of intruder),
• preset disturbance time (time the intruder is in the pattern).
These items define the characteristics of an intruder and when all three are detected simultaneously, an alarm signal is generated.
The barrier can provide protection from the ground to about 4 metres of altitude. It is usually configured in zones of about 200 metre lengths depending on the number of sensor wires installed.
• pros: concealed as a buried form.
• cons: expensive, short zones which mean more electronics (more money), high rate of false alarms as it cannot distinguish a cat from a human. In reality it doesn't work that well, as extreme weather causes false alarms.

Microwave barriers
The operation of a microwave barrier is very simple. This type of device produces an electromagnetic beam using high frequency waves that pass from the transmitter to the receiver, creating an invisible but sensitive wall of protection. When the receiver detects a difference of condition within the beam (and hence a possible intrusion), the system begins a detailed analysis of the situation. If the system considers the signal a real intrusion, it provides an alarm signal that can be treated in analog or digital form.

Microphonic systems
Microphonic based systems vary in design but each is generally based on the detection of an intruder attempting to cut or climb over a chainwire fence. Usually the microphonic detection systems are installed as sensor cables attached to rigid chainwire fences, however some specialised versions of these systems can also be installed as buried systems underground. Depending on the version selected, it can be sensitive to different levels of noise or vibration. The system is based on coaxial or electro-magnetic sensor cable with the controller having the ability to differentiate between signals from the cable or chainwire being cut, an intruder climbing the fence, or bad weather conditions.
The systems are designed to detect and analyse incoming electronic signals received from the sensor cable, and then to generate alarms from signals which exceed preset conditions. The systems have adjustable electronics to permit installers to change the sensitivity of the alarm detectors to the suit specific environmental conditions. The tuning of the system is usually accomplished during commissioning of the detection devices.
• pros: very cheap, very simple configuration, easy to install.
• cons: some systems has a high rate of false alarms because some of these sensors might be too sensitive. Although systems using DSP (Digital Signal Processing) have largely eliminated false alarms.

Taut wire fence systems
A taut wire perimeter security system is basically an independent screen of tensioned tripwires usually mounted on a fence or wall. Alternatively, the screen can be made so thick that there is no need for a supporting chainwire fence. These systems are designed to detect any physical attempt to penetrate the barrier. Taut wire systems can operate with a variety of switches or detectors that sense movement at each end of the tensioned wires. These switches or detectors can be a simple mechanical contact, static force transducer or an electronic strain gauge. Unwanted alarms caused by animals and birds can be avoided by adjusting the sensors to ignore objects that exert small amounts of pressure on the wires. It should be noted that this type of system is vulnerable to intruders digging under the fence. A concrete footing directly below the fence is installed to prevent this type of attack.
• pros: low rate of false alarms, very reliable sensors and high rate of detection.
• cons: Very expensive, complicated to install and old technology.

Fibre optic cable
A fibre-optic cable can be used to detect intruders by measuring the difference in the amount of light sent through the fibre core. If the cable is disturbed, light will ‘leak’ out and the receiver unit will detect a difference in the amount of light received. The cable can be attached directly to a chainwire fence or bonded into a barbed steel tape that is used to protect the tops of walls and fences. This type of barbed tape provides a good physical deterrent as well as giving an immediate alarm if the tape is cut or severely distorted. Other type’s works on the detection of change in polarization which is caused by fiber position change.
• pros: very similar to the Microphonic system, very simple configuration, easy to install. Can detect for distances of several km on a single sensor.
• cons: high rate of false alarm or no alarms at all for systems using light that leaks out of the optical fiber. The polarization changing system is much more sensitive but false alarms depend on the alarm processing.

H-field
This system employs an electro-magnetic field disturbance principle based on two unshielded (or ‘leaky’) coaxial cables buried about 10–15 cm deep and located at about 2.1 metres apart. The transmitter emits continuous Radio Frequency (RF) energy along one cable and the energy is received by the other cable. When the change in field strength weakens due to the presence of an object and reaches a pre-set lower threshold, an alarm condition is generated. The system is unobtrusive when it has been installed correctly, however care must be taken to ensure the surrounding soil offers good drainage in order to reduce nuisance alarms.
• pros: concealed as a buried form.
• cons: affected by RF noise, high rate of false alarms, hard to install.

Hooter
The hooters offered are sophisticated, stylish and highly featured solution to external sounder requirements.
The features are:
Easily mountable
Rugged strobe with panaromic lens
Sound output - 108 db - 113 db
Selectable timer
Dual ring mode
Alternating comfort Leds
Selectable sounder cut-off timer

System connections
The trigger signal from each sensor is transmitted to one or more control unit(s) either through wires or wireless means (radio, line carrier, infrared). Wired systems are convenient when sensors (such as PIRs, smoke detectors etc) require power to operate correctly, however, they may be more costly to install. Entry-level wired systems utilize a Star network topology, where the panel is at the center logically, and all devices "home run" its wire back to the panel. More complex panels use a Bus network topology where the wire basically is a data loop around the perimeter of the facility, and has "drops" for the sensor devices which must include a unique device identifier integrated into the sensor device itself (e.g iD biscuit). Wired systems also have the advantage, if wired properly, of being tamper-evident. Wireless systems, on the other hand, often use battery-powered transmitters which are easier to install, but may reduce the reliability of the system if the sensors are not supervised, or if the batteries are not maintained. Depending on distance and construction materials, one or more wireless repeaters may be required to get the signal reliably back to the alarm panel. Hybrid systems utilize both wired and wireless sensors to achieve the benefits of both. Transmitters, or sensors can also be connected through the premises electrical circuits to transmit coded signals to the control unit (line carrier). The control unit usually has a separate channel or zone for burglar and fire sensors, and better systems have a separate zone for every different sensor, as well as internal "trouble" indicators (mains power loss, low battery, wire broken, etc).

Alarm connection and monitoring
Depending upon the application, the alarm output may be local, remote or a combination. Local alarms do not include monitoring, though may include indoor and/or outdoor sounders (e.g. motorized bell or electronic siren) and lights (e.g. strobe light) which may be useful for signaling an evacuation notice for people during fire alarms, or where one hopes to scare off an amateur burglar quickly. However, with the widespread use of alarm systems (especially in cars), false alarms are very frequent and many urbanites tend to ignore alarms rather than investigating, let alone contacting the necessary authorities. In short, there may be no response at all. In rural areas (e.g., where nobody will hear the fire bell or burglar siren) lights or sounds may not make much difference anyway, as the nearest responders could take so long to get there that nothing can be done to avoid losses.
Remote alarm systems are used to connect the control unit to a predetermined monitor of some sort, and they come in many different configurations. High-end systems connect to a central station or responder (eg. Police/ Fire/ Medical) via a direct phone wire (or tamper-resistant fiber optic cable), and the alarm monitoring includes not only the sensors, but also the communication wire itself. While direct phone circuits are still available in some areas from phone companies, because of their high cost they are becoming uncommon. Direct connections are now most usually seen only in Federal, State, and Local Government buildings, or on a school campus that has a dedicated security, police, fire, or emergency medical department (in the UK communication is only possible to an Alarm Receiving Centre - communication direct to the emergency services is not permitted). More typical systems incorporate a digital telephone dialer unit that will dial a central station (or some other location) via the Public Switched Telephone Network (PSTN) and raise the alarm, either with a synthesized voice or increasingly via an encoded message string that the central station decodes. These may connect to the regular phone system on the system side of the demarcation point, but typically connect on the customer side ahead of all phones within the monitored premises so that the alarm system can seize the line by cutting-off any active calls and call the monitoring company if needed. Encoders can be programmed to indicate which specific sensor was triggered, and monitors can show the physical location (or "zone") of the sensor on a list or even a map of the protected premises, which can make the resulting response more effective. For example, a water-flow alarm, coupled with a flame detector in the same area is a more reliable indication of an actual fire than just one or the other sensor indication by itself. Many alarm panels are equipped with a backup dialer capability for use when the primary PSTN circuit is not functioning. The redundant dialer may be connected to a second phone line, or a specialized encoded cellular phone, radio, or internet interface device to bypass the PSTN entirely, to thwart intentional tampering with the phone line(s). Just the fact that someone tampered with the line could trigger a supervisory alarm via the radio network, giving early warning of an imminent problem (e.g., arson). In some cases a remote building may not have PSTN phone service, and the cost of trenching and running a direct line may be prohibitive. It is possible to use a wireless cellular or radio device as the primary communication method.

Broadband Alarm Monitoring
Increasing deployment of voice over IP technology (VoIP) is driving the adoption of broadband signaling for alarm reporting. Many sites requiring alarm installations no longer have conventional telephone lines (POTS), and alarm panels with conventional telephone dialer capability do not work reliably over some types of VoIP service
Legacy dial up analog alarm panels or systems with serial/parallel data ports may be migrated to broadband through the addition of an alarm server device which converts telephone signaling signals or data port traffic to IP messages suitable for broadband transmission. But the direct use of VoIP (POTS port on premises terminal) to transport analog alarms without an alarm server device is problematic as the audio codecs used throughout the entire network transmission path cannot guarantee a suitable level of reliability or quality of service acceptable for the application.
In response to the changing public communications network, new alarm systems often can use broadband signaling as a method of alarm transmission, and manufacturers are including IP reporting capability directly in their alarm panel products. When the Internet is used as a primary signaling method for critical security and life safety applications, frequent supervision messages are configured to overcome concerns about backup power for network equipment and signal delivery time. But for typical applications, connectivity concerns are controlled by normal supervision messages, sent daily or weekly.
Various IP Alarm transmission protocols exist but most in use today are proprietary. Just as the formats used for conventional telephone reporting were standardized and published, broadband signaling for alarm reporting is being standardized today. In 2007, US alarm manufacturers developed an open standard called DC-09. This standard has been accepted as an American National Standard, and is published as ANSI/SIA DC-09-2007. [ref: ANSI/SIA DC-09-2007] The protocol provides an encoding scheme and transport mechanism to carry data from 17 previously defined alarm protocols, including the latest Contact ID, SIA DC-03 and SIA 2000 protocols. [ref: ANSI/SIA DC-07-2001.04] Several manufacturers of panels and receivers are reported to be developing or have released support for DC-09.

Listen In Alarm monitoring
Monitored alarms and speaker phones allow for the central station to speak with the homeowner and/or intruder. This may be beneficial to the owner for medical emergencies. For actual break-ins, the speaker phones allow the central station to urge the intruder to cease and desist as response units have been dispatched.

Alarm monitoring Services
The list of services to be monitored at a Central Station has expanded over the past few years to include: Access Control; CCTV Monitoring; Environmental Monitoring; Intrusion Alarm Monitoring; Fire Alarm & Sprinkler Monitoring; Critical Condition Monitoring; Medical Response Monitoring; Elevator Telephone Monitoring; Hold-Up or Panic Alarm Monitoring; Duress Monitoring; Auto Dialer tests; Open & Close Signal Supervision & Reporting; Exception Reports; and PIN or Passcode Management. Increasingly, the Central Stations are making this information available directly to end users via the internet and a secure log-on to view and create custom reports on these events themselves.

Alarm response
Depending upon the zone triggered, number and sequence of zones, time of day, and other factors, the monitoring center can automatically initiate various actions. They might be instructed to call the ambulance, fire department or police department immediately, or to first call the protected premises or property manager to try to determine if the alarm is genuine. They could also start calling a list of phone numbers provided by the customer to contact someone to go check on the protected premises. Some zones may trigger a call to the local heating oil company to go check on the system, or a call to the owner with details of which room may be getting flooded. Some alarm systems are tied to video surveillance systems so that current video of the intrusion area can be instantly displayed on a remote monitor, not to mention recorded.

Access control and bypass codes
To be useful, an intrusion alarm system is deactivated or reconfigured when authorized personnel are present. Authorization may be indicated in any number of ways, often with keys or codes used at the control panel or a remote panel near an entry. High-security alarms may require multiple codes, or a fingerprint, badge, hand-geometry, retinal scan, encrypted response generator, and other means that are deemed sufficiently secure for the purpose.
Failed authorizations should result in an alarm or at least a timed lockout to prevent "experimenting" with possible codes. Some systems can be configured to permit deactivation of individual sensors or groups. Others can also be programmed to bypass or ignore individual sensors (once or multiple times) and leave the remainder of the system armed. This feature is useful for permitting a single door to be opened and closed before the alarm is armed, or to permit a person to leave, but not return. High-end systems allow multiple access codes, and may even permit them to be used only once, or on particular days, or only in combination with other users' codes (i.e., escorted). In any case, a remote monitoring center should arrange an oral code to be provided by an authorized person in case of false alarms, so the monitoring center can be assured that a further alarm response is unnecessary. As with access codes, there can also be a hierarchy of oral codes, say, for furnace repairperson to enter the kitchen and basement sensor areas but not the silver vault in the butler's pantry. There are also systems that permit a duress code to be entered and silence the local alarm, but still trigger the remote alarm to summon the police to a robbery.
Fire sensors can be "isolated", meaning that when triggered, they will not trigger the main alarm network. This is important when smoke and heat is intentionally produced. The owners of buildings can be fined for generating False alarms that waste the time of emergency personnel.

Zone bypassing and forced arming
Sometimes you may want to disconnect OR bypass part of the protected area e.g. in case of a fault in part of the system or when for some reason you do not want to protect a specific area. Such situations can be handled only if the system allows selectively bypassing or arming at a zone level.

False / no alarms
System reliability can be a problem when it causes nuisance alarms, false alarms, or fails to alarm when called for. Nuisance alarms occur when an unintended event evokes an alarm status by an otherwise properly working alarm system. A false alarm also occurs when there is an alarm system malfunction that results in an alarm state. In all three circumstances, the source of the problem should be immediately found and fixed, so that responders will not lose confidence in the alarm reports. It is easier to know when there are false alarms, because the system is designed to react to that condition. Failure alarms are more troublesome because they usually require periodic testing to make sure the sensors are working and that the correct signals are getting through to the monitor. Some systems are designed to detect problems internally, such as low or dead batteries, loose connections, phone circuit trouble, etc. While earlier nuisance alarms could be set off by small disturbances, like insects or pets, newer model alarms have technology to measure the size/weight of the object causing the disturbance, and thus are able to decide how serious the threat is, which is especially useful in burglar alarms.

False-Alarm Reduction
Home and business owners can now choose a new type of keypad control panel designed to help reduce false alarms.
Based on a standard called CP-01-2000, developed by the American National Standards Institute (ANSI) and Security Industry Association (SIA)) , the new generation of keypad control panels takes aim at user error by building in extra precautions that minimize unwarranted dispatch of emergency responders.
Some of the features of CP-01 keypads include a progress annunciation function that emits a different sound during the last 10 seconds of delay, which hastens exit from the premises. Also, the exit time doubles if the user disables the pre-warning feature.
Other "rules" address failure to exit premises, which results in arming all zones in Stay Mode and a one-time, automatic restart of exit delay. However, if there is an exit error, an immediate local alarm will sound.
Cross zoning reduces alarms
Cross zoning is an innovative alarm-system strategy that does not require a new keypad. Using multiple sensors to monitor activity in one area, advanced software analyzes input from all the sources.
For example, if a motion detector trips in one area, the signal is recorded and the central-station monitor notifies the customer. A second alarm signal - received in an adjacent zone in close time proximity, is the confirmation the central-station monitor needs to request a dispatch immediately. This builds in increased protection and a fail safe should a door blow open or a bird rattle an exterior window.

Enhanced Call Verification
Enhanced Call Verification (ECV) helps reduce false dispatches while still protecting citizens. ECV requires central station personnel to attempt to verify the alarm activation by making a minimum of two phone calls to two different responsible party telephone numbers before dispatching law enforcement to the scene.
The first alarm-verification call goes to the location the alarm originated. If contact with a person is not made a second call is placed to a different number. The secondary number, best practices dictate*, should be to a telephone that is answered even after hours, preferably a cellular phone of a decision maker authorized to request or bypass emergency response.
In-the-field proof that ECV practices are the best solution for false-alarm reduction while maintaining the safety of taxpayers comes from the state of Florida. As of July 1, 2006, the implementation date of the nation’s first statewide ECV law, the Palm Beach County Sheriff’s Department reduced dispatches from 12,712 between October 2005 and December 2005 to 8,802 during the same period in 2006. Tennessee has also adopted EVC policies, as has Reno, Nevada policies among other municiplaities including St. Louis, MO, Providence, RI, Bethlehem, PA and Golden, CO, among others. CSAA/ECV which is an ANSI adopted standard has recently been adopted in ordinance form in Lynn, ma 2/17/09 as a proven method to reduce false police dispatches. In addition to a possible second call other more advanced methods can also be utilized to distinguish between a potential false alarm or real alarm such as alarm & cancel or biometrics. CSAA/ECV means = Central Station Alarm Association / Enhanced Call verification.

Video verification
Video verification documents a change in local conditions by using cameras to record video signals or image snapshots. The source images can be sent over a communication link, usually an Internet protocol (IP) network, to the central station where monitors retrieve the images through proprietary software. The information is then relayed to law-enforcement and recorded to an event file, which can later be used as prosecution evidence.
An example of how this system works is when a passive infrared or other sensor is triggered a designated number of video frames from before and after the event is sent to the central station.
A second video solution can be incorporated into to a standard panel, which sends the central station an alarm. When a signal is received, a trained monitoring professional accesses the on-site digital video recorder (DVR) through an IP link to determine the cause of the activation. For this type of system, the camera input to the DVR reflects the alarm panel’s zones and partitioning, which allows personnel to look for an alarm source in multiple areas.




Sources
1. Atss, R.Nandakumar.
2. Walker, Philip (1985). Electronic Security Systems. Cambridge, UK: University Press.
3. Aii, N.Clifton. "Broadband CSV, XML Alarm data Standards" Auckland NZ, (2002)
Trimmer, H.William (1981). Understanding and Servicing Alarm Systems. Stoneham: Butterworth.
4. http://www.gobeyondsecurity.com/profile/ArindamBhadra
5. http://www.orkut.co.in/Main#Community?cmm=97394062