Showing posts with label Motion detector. Show all posts
Showing posts with label Motion detector. Show all posts

Friday, July 15, 2022

Planning a Security Intrusion System Installation Location

Planning a Security Intrusion System Installation Location 

The first step when installing any alarm system is to determine what you will install and where. Below is a typical floor plan from a home builder that has been marked up to indicate where alarm components will be installed. These simple plans are the type that builders normally provide to people looking to build a new home and can sometimes be found on the builder's web site. Marking up a copy of these plans is a good place to start to determine how many window & door sensors and motion detectors you will need to protect the entire home.

Sample Alarm Wiring Plan:

Legend

P:     Main Alarm Panel

K:     Keypad

        Input Devices

M:     Motion Detector

D:     Door Sensor

W:     Window Sensor

G:     Glass Break Sensor

L:     Liquid/Water Sensor

        24 Hour Input Devices

F:     Fire/Smoke/Heat Sensor

        Output Devices

H:     Horn/Siren

S:     Strobe Light



The first major decision is to determine if you want to have sensors for every window in the home or are motion detectors good enough to provide coverage. A quick look at these floor plans shows that wiring sensors for every window more than doubles the amount of wires that you will need to run.

A typical entry level panel is limited to 8 zones. Even higher end panels need expander cards to support more than 8 zones. Even if you have more than 8 sensors you can still use an 8 zone panel. You will just need to wire multiple sensors to a single zone. When a zone with multiple sensors is tripped, you will not be able to determine which sensor is the cause. Also, if there is a fault/error with a multiple-sensor zone it will be more difficult to diagnose.

Here are some examples of 8, 16, & 32 zone setups.

8 zone: - Assumes Fire detectors are handled separately

·        Living Room Motion Detector

·        Family Room Motion Detector

·        Dining Room Motion Detector

·        Basement Motion Detector

·        Front Door

·        Back + Garage Door

·        Dinette Glass Break Sensor

·        Water Sensor

16 zone: - The above 8 zone layout plus window sensors (multiple windows per zone)

·        Dining Room Windows

·        Living Room Windows

·        Family Room Windows

·        Kitchen/Laundry Windows

·        Owner's Bedroom/Bathroom Windows

·        Bedroom 2 Windows

·        Bedroom 3+4 Windows

·        Basement Windows

32 zone: - With 32 zones, every sensor indicated in the floor plan above will have its own sensor. 

There are other considerations when combining sensors into a single zone. Alarm systems can be activated with some zones disabled. For example, if you activate the alarm at night when you sleep you want the doors and windows protected, but you do not the motion sensors active. You probably want the motion sensors disabled so that you can walk around the house without setting off the alarm. Therefore, you should not combine the window & motion sensors from the same room into a single zone. During a hot summer night you may want to leave the windows in your room open, but not any of the downstairs windows. Again, these windows would need to be in separate zones so that you could leave upstairs windows open but have the downstairs windows protected.

If you feel any support required, then mail us with your details ssaintegrtae@gmail.com


Saturday, January 1, 2022

Security Camera Input Setup

 Security Camera Input Setup

Artificial Intelligence (AI) security cameras are specialized network IP cameras that perform advanced analytical functions such as vehicle detection, person detection, face detection, traffic counting, people counting, and license plate recognition (LPR). These artificial intelligence functions are achieved using highly advanced video analytics software that is built-in to the camera and recorder they are connected to. AI cameras can be used as a stand-alone device by recording to an SD card, or they can be connected to a network video recorder (NVR) to create a multi-camera AI system that records to a central hard drive. Please note that only certain models are capable of license plate recognition / automated number plate recognition (ANPR).

A special characteristic some network video devices possess is an integrated input & output ports. This incorporation allows for the communication and interaction of external devices, such as but not limited to:
1.   Doorbells
2.   Switches
3.   Alarm System Relay
4.   Pressure strips
5.   Detectors (frequency, smoke, movement, sound, temperature, and humidity sensors)

All these functions can be achieved via:
1.   NVR/DVR (remote or local)
2.   Application through a smart device (Tablet or Phone)
3.  
Computer (local or remote / software or browser)

 

Camera / DVR / NVR Alarm Input

Motion sensors / motion detectors can be integrated with video surveillance systems to provide additional security for buildings and also outdoor areas. For example, a PIR sensor (passive infrared) can be connected to the alarm input of a security camera DVR or IP camera NVR to trigger video recording and send an alert to the property owner that motion has been detected in a certain area.

When motion is detected by the motion sensor, it triggers the following alarm actions.
1.   Trigger video recording on the camera associated with the alarm.
2.   Enable the alarm output on channel one, where I have an alarm light attached (turn the strobe light on).
3.   Pop-up live video of the camera associated with the alarm on the DVR’s display monitor.
Here are some additional actions that can be triggered from an alarm input.
1.   Capture a still image snapshot.
2.   Send a push notification to the mobile app for iPhone & Android.
3.   Enable the alarm buzzer on the DVR / NVR.
4.   Send an email notification.

The inputs and outputs can be used to eliminate unnecessary recording of video or coincide with your alarm system to systematically create a reliable and accountable security source. When input and output mechanisms are triggered, you can (manually or automatically) request through the network video device that certain actions be performed over the network as well as trigger devices attached to the output ports. Example:

This example picture above shows a person interrupting a sensors function. This creates a signal that travels to the camera and the camera computes the message. The camera then functions as programmed and starts recording (snapshots or footage) to the delegated device while simultaneously triggers a relay to close. When the relay closes, it completes the circuit for the siren or strobe to activate. Another configuration (as long as the cameras capable), have the camera record to the desired method based on motion and simultaneously trigger the relay to set off the siren. In this example, a motion sensor is taken out of the equation.

Again, the above picture shows only one of many configurations. You can configure in whatever method you desire. Including or excluding recording methods based off of:
·        Motion (movement takes place)
·        Masking (the camera has been covered or obstructed significantly)
·        Video Loss (picture is no longer materializing, this feature is more prone to function correctly via a recorder or program)

Other devices that can be attached and configured to your I/O ports are as follows:

Device Type

Description

Occurrence of activation

Entry Contacts

Simple magnetic sensors detecting opening of doors, windows, gates and shutters.

When the circuit is broken (door is opened) the camera can record and/or send a snapshot and notifications

Motion Sensors

A sensor that detects motion either based on heat, light, or frequency

When motion is detected, the sensor breaks the circuit and  the camera can record and/or send a snapshot and notifications

Glass Break or Glass Shock Sensor

A sensor capable of distinguishing the sound/vibration of breaking glass and/or splintering wood.

When glass is  disturbed or shattered, the glass sensor breaks the circuit and the camera can record and/or send a snapshot and notifications

Pressure strip or switch

A pressure or switch sensor that are needed to interact with before gaining entry or exiting a premise or structure

When the sensor is triggered it breaks the circuit and the camera can record and/or send a snapshot and notifications


How-to Install Motion Detectors with a Security Camera System

Installing a motion detector and integrating it with a security camera system is fairly simple. CCTV Camera Pros supports professional and DIY installers. Most PIR motion sensors are 12V DC powered which gives installers the choice of using a individual 12V DC power supply or one of the ports on a multi-channel power supply box (the same ones used with security cameras).

In this first diagram, a single 12V DC power transformer is used. This is how it works.

1.   On the right side of the diagram, the alarm input / output panel of the DVR is shown. This is what the alarm panel on the back.

2.   18/2 gauge power cable connects the output of the motion detector to one of the alarm input ports on the DVR.

3.   18/2 gauge power cable is also used to connect the motion detector to an individual DC power supply.

4.   A PT-4 power lead connects the raw cables to the 3.1mm plug on the power supply.

Installation with Power Supply Box

A multi-channel power supply box can be used instead of an individual power supply.

This installation is the same as the one above using the single power supply. The only difference is the use of a multi-channel power supply box to power the motion detector. CCTV Camera Pros supplies many of these power boxes for security camera installations. These power boxes can be shared with cameras and 12V DC powered alarm sensors. Because power supply boxes use screw based wire terminals, there is no need to use a PT-4 power lead (as with the individual power supply installation). Same connection for Camera & NVR.

Most of Camera PIR motion sensor is located on the front of the camera, just below the camera lens. This motion sensor is designed to detect movement of human sized objects when they come into view of the camera’s lens. The camera has a 2.8-12mm varifocal lens which when adjusted to the widest angle (the 2.8mm setting) the camera provides a 109 degree horizontal field of view. The PIR sensor detects motion across a 100 degree field of view. Please note that if you adjust the lens to a more narrow field of view, this does not effect the area where the PIR sensor will detect motion.
In my experience, using a PIR sensor based motion detection is much more reliable than software based video motion detection (especially for outdoor video surveillance). Typically there are a lot of small moving objects outdoors which makes it difficult to get the sensitivity just right. When security cameras turn to night mode, there is typically some video noise because of the lack of light. This noise can cause false alarms when using video motion detection. A PIR sensor uses infrared light to measure the radiation reflected by objects in its view. When a certain amount of this radiation changes, the PIR sensor triggers an alarm, so they are not susceptible to some of the challenges of outdoor video motion detection.

FAQ

Here are some frequently asked questions about integrating PIR motion detectors with security camera systems.

·        How are motion detectors used with security camera systems?
The most common way to integrate a motion detector with a security camera system is to hard wire the motion detector to the same surveillance DVR that your security cameras are connected to. You must make sure that your DVR that has alarm inputs.

·        Can I just use motion detected from my security camera instead of an external motion sensor?
Yes, most DVRs support video motion detection triggered by cameras. Please note that this is different from PIR (passive infrared) motion detection and can be less reliable. Video motion detection tends to produce more false positives than PIR motion detection, especially in outdoor and infrared camera applications. This is because the video tends to be more noisy and outdoor environments tend to always have some motion from wind and other natural elements.

·        What type of cable is used to wire motion detectors to DVRs?
The following types of cable can be used to wire motion detectors: CAT-5 cable (one pair), 18/2 conductor power cable.

·        Do motion detectors require power?
Yes. Most PIR motion detectors use 12V DC power. All of ours include the proper power supply with them.

·        Can I use multiple motion detectors with my surveillance system?
Yes, as long as your DVR has multiple alarm input ports, you can use multiple motion detectors. Different model DVRs support different numbers of alarm inputs so consult the specification or contact us if you need help.

Not every camera or NVR/DVR possesses this unique features or can be operated through the above mentioned methods. Be sure you research everything you will need to make this type of setup successfully work for you. This includes the correct relays, power supplies, capable camera and recording devices. Most our IP mega pixel cameras and recorders have the capability of all previous mention features above.

If you are not understand, you can touch with us for further support. We deal Infinova, Hanwha, Milestone, Mirasys & Luxriot brand.


Tuesday, June 15, 2021

LiDAR based Motion Detection Technology

 LiDAR based Motion Detection Technology

White light comprises every color of the visible spectrum, with multiple colors having different frequencies and wavelengths. As a result, it's very challenging to beam this type of light onto a single point. LEDs commonly utilized for visual indication in electronic devices and equipment generate light containing electromagnetic waves of varying frequencies.

Laser diodes (LDs), on the other hand, produce "coherent light," which consists of a focused light beam of a specific frequency and wavelength. Their unique properties make them highly useful in today’s fast-changing world.

LDs are semiconductor devices similar in function to LEDs, but capable of producing coherent laser light. LEDs generate light via electroluminescence — the process of passing an electric current through the device to create photons by creating excess electron and hole pairs. LDs, on the other hand, amplify visible light via stimulated emission of radiation.

Laser light has the following distinct properties:

Coherence: Laser light can be termed coherent since the wavelength of the light waves emitted is in phase.

High-power and Intensity: Laser is incredibly bright since it is emitted by continuous emissions with more power per unit surface area.

MonochromaticityLaser comprises light waves of a single wavelength.

Directionality: Light emitted from laser diodes is highly directional, as it shows minimal divergence.

Laser diodes are designed by doping semiconductor materials like aluminum gallium arsenide to create n-type and p-type layers. Doping is the process of adding small amounts of impurities to pure semiconductors to improve conductivity.

LDs give off light when electric current applied to the device causes the holes and electrons in a semiconductor material to interact at the p-n junction, also known as stimulated emission. They can also accurately measure an object’s shape and distance by taking advantage of the laser beam’s linearity. This technology is known as Light Detection and Ranging (LiDAR).

The time of flight (ToF) method is the most used distance measurement method in LiDAR. In the ToF method as depicted in the image below, distance is calculated by measuring the time it takes for the light emitted from the light source to be reflected by the object and returned to the detector (flight time).

LiDAR follows a simple principle — throw laser light at an object on the earth surface and calculate the time it takes to return to the LiDAR source. Given the speed at which the light travels (approximately 186,000 miles per second), the process of measuring the exact distance through LiDAR appears to be incredibly fast. However, it’s very technical. The formula that analysts use to arrive at the precise distance of the object is as follows:

The distance of the object = (Speed of Light x Time of Flight)/ 2

Motion detectors have long been key tools in a security designer’s & customers. Some of devices / detector gives nuisance alarms and installer frustration. The first motion sensor was invented in the 1940s by Samuel Bagno using technology developed during World War II. Using his military knowledge of radar, Bagno developed a device that used ultrasonic waves and the Doppler Effect to detect motion. By the 1970s, these motion detectors were popular components in home burglar alarm systems; however, they were prone to false alarms, as the ultrasonic waves could easily be disrupted by innocent disruptors such as wind or a clock chime.

In the 1980s, advancements in technology brought us the infrared motion sensor. Active infrared sensors work by emitting infrared radiation, detecting differences in temperature between an object and its surroundings. Many motion detectors combine multiple technologies to reduce false alarms. Passive infrared, for example, is commonly paired with microwave detection. Both sensors should be activated before an alarm is triggered.

Fast-forward to today, and companies at the forefront of motion detection have been implementing a new technology: Light Detection and Ranging (LiDAR). Popularized by the autonomous vehicle industry and smartphone manufacturers, LiDAR uses a pulsed laser to calculate the distance from the laser source to an object. By measuring the light from the laser’s reflection, 3-D representations of surfaces can be created. Once a static scene is established, changes to that scene can trigger a motion alarm.

The advantage of LiDAR in this application is how finely the detection area and target object size can be tuned, and how well a target can be tracked. By adding intelligence to how these values are programmed, the days of the security technician “walk test” to determine the detection area may be numbered. LiDAR sensors enhance motion sensor capabilities by providing more detection customization and on-board laser analytics that give you the ability minimize false and nuisance alarms.

The LiDAR sensors themselves have rectangular detection areas, which drastically simplifies design and implementation over traditional fan-shaped detection areas. This enables coverage of large areas with fewer sensors, since they can be placed in locations that eliminate overlap. Rectangular detection areas can be easily used to create detection “planes” along a perimeter, building face or rooftop, for example.

The amount of intelligence built into the device had me wondering whether these motion detectors have jumped categories and are in competition with motion analytics-equipped video surveillance cameras. Motion detectors outperform video analytics because they are purpose-built for the application and have detection technology superior to video cameras. The major value add for using a sensor with a motion detection analytic is to create an IP video double knock.

Motion sensors can transmit coordinate data to integrated video management platforms to help direct cameras to track a target. Because visible light is not a requirement, they can help track targets in darkness, in conditions when a video surveillance camera may be challenged. If a camera is not present to help validate the motion detector alarm, the device itself can store a snapshot of the alarm-inducing condition for retrieval by a security operator.

With motion detectors joining the evergrowing Internet of Things (IoT), ensuring the devices have the appropriate level of cyber features must be considered.


Sunday, February 9, 2020

Burglar or intrusion Alarm System Component Details

Burglar (or intrusion) Alarm System Component Details

Burglar (or intrusion), fire, and safety alarms are electronic alarms designed to alert the user to a specific danger. Sensors are connected to a control unit via low-voltage wiring or a narrowband RF signal which is used to interact with a response device. The most common security sensors are used to indicate the opening of a door or window or detect motion via passive infrared (PIR). New construction systems are predominately hardwired for economy. Some installations often use wireless systems for a faster, more economical installation. Some systems serve a single purpose of burglar or fire protection. Combination systems provide both fire and intrusion protection. Systems range from small, self-contained noisemakers, to complicated, multi-zoned systems with color-coded computer monitor outputs. Many of these concepts also apply to portable alarms for protecting cars, trucks or other vehicles and their contents (i.e., "car alarms"). See also fire alarm control panel for specific fire system issues. Burglar alarms are sometimes referred to as alarm systems, see burglar alarm control panel for a discussion of hard-wired burglar alarm system design.
Burglar alarms (or perimeter detection systems, Perimeter protection, intrusion detection systems and many more terms for the same thing) are divided to two main fields: home burglar alarms and industrial burglar and perimeter intrusion detection.

Intruder Panel

These are reliable and easy to use and offers enhanced fire detection and external lighting control facilities, conforming to CE specification directives and BS4737 standards. 

The salient features are:

Zones - Each zone is separately identified on the keypad and provides ample security detection for most domestic properties. Typically 4zone. 8zone, 16 zone panel in market. Currently some hybride panel also there (eg: 4 Hardware Zone + 8 wireless Zone)
3 Part Set Programs - Allows three programmed setting levels dependent on the people in the property or the level of protection required. 
Simple Set Readers for Ease of Operation - Up to 4 stylish readers can be used to set/unset the system using a proximity keyfob. 
Personal Attack Facility - Any number of PA buttons may be set to activate the system in an emergency. 
Remote Keypads for added Flexibility - Up to four keypads can operate the system from any point in the property. 
Input for Remote Keyswitch or Push to Set Switch - A remote keyswitch or push can be used to set or unset the system. 
Fire Zone - Any number of zones can be programmed as a fire zone. Two types are available: Standard Fire - operated only whwn system has been set; 24 hour - operates all the time. 
Lighting Control Feature - Full manual and automatic control over security lightng. 
Duress Code - Allows the user to unset the system and silence the alarm under duress, using a second code that will communicate an alarm to an alarm receiving center. 
Chime - Can be used to select a low security chime alarm for various areas of the protected area, even when the main alarm is turned off. 
Built-in tamper control.
Indoor

These types of sensors are designed for indoor use. Outdoor use would not be advised due to false alarm vulnerability and weather durability.

Motion detector

A motion detector is a device that contains a physical mechanism or electronic sensor that quantifies motion that can be either integrated with or connected to other devices that alert the user of the presence of a moving object within the field of view. They’re a vital component of comprehensive security systems, for both homes and businesses.
An electronic motion detector contains a motion sensor that transforms the detection of motion into an electric signal. This can be achieved by measuring optical or acoustical changes in the field of view.
A motion detector connected to a burglar alarm that is used to alert the home owner or security service after it detects motion. Such a detector may also trigger a red light camera.
An occupancy sensor is a motion detector that is integrated with a timing device. It senses when motion has stopped for a specified time period in order to trigger a light extinguishing signal. These devices prevent illumination of unoccupied spaces like public toilets.
There are basically three types of sensors used in motion detectors spectrum.
  • Passive Infrared sensors (PIR)
    • Looks for body heat. No energy is emitted from the sensor.
  • Ultrasonic (Active)
    • Sensor sends out pulses and measures the reflection off a moving object.
  • Microwave (Active)
    • Sensor sends out microwave pulses and measures the reflection off a moving object. Similar to a police radar gun.

Passive infrared detectors

The passive infrared detector (PIR) is one of the most common detectors found in household and small business environments because it offers affordable and reliable functionality. The term passive means the detector is able to function without the need to generate and radiate its own energy (unlike ultrasonic and microwave volumetric intrusion detectors that are “active” in operation). PIRs are able to distinguish if an infrared emitting object is present by first learning the ambient temperature of the monitored space and then detecting a change in the temperature caused by the presence of an object. Using the principle of differentiation, which is a check of presence or nonpresence, PIRs verify if an intruder or object is actually there. Creating individual zones of detection where each zone comprises one or more layers can achieve differentiation. Between the zones there are areas of no sensitivity (dead zones) that are used by the sensor for comparison.

The salient features of the range of movement detectors are as follows:

Look Down Technology - Dual lookdown zones are employed to ensure that even the most determined intruder will be detected. 
NC/NO Selectable Outputs - Products are fitted with changeover relays to ensure compatibility with all requirements. 
White Light Filter Lens - To minimize any possibility of problematic alarms due to fluorescent / environmental conditions. 
Intelligent Pulse Counts - Reduces the possibility of false alarms caused by environmental and power line interference. 
Sealed Optics - The sensor element is sealed, to prevent unwanted small insects form accessing the sensor area.

Dual-technology motion detectors

Many modern motion detectors use a combination of different technologies. These dual-technology detectors benefit with each type of sensor, and false alarms are reduced. All companies have the option to use PIR/Microwave Motion Detectors that have "Pet-Immune" functions which allow the detector to ignore pets that weigh up to 80 pounds. Placement of the sensors can be strategically mounted so as to lessen the chance of pets errantly activating alarms.
Often, PIR technology will be paired with another model to maximize accuracy and reduce energy usage. PIR draws less energy than microwave detection, and so many sensors are calibrated so that when the PIR sensor is tripped, it activates a microwave sensor. If the latter also picks up an intruder, then the alarm is sounded.n it is also used in burglar alarm. As interior motion detectors do not ‘see’ through windows or walls, motion-sensitive outdoor lighting is often recommended to enhance comprehensive efforts to protect the property.

Panic Button

Panic buttons are targeted and rapid mode of contact used primarily by sick and old people to contact their care takers at times of distress or during emergency situations. It offers either visual or acoustic signaling. The signals can also be routed to the wireless devices carried by their caregivers, enabling a fast and quick response. This system typically consists of a main communicator panel and the multiple points connected to it.


Ultrasonic detectors

Using frequencies between 25 kHz and 75 kHz, these active detectors transmit ultrasonic sound waves that are inaudible to humans. The Doppler shift principle is the underlying method of operation, in which a change in frequency is detected due to object motion. This is caused when a moving object changes the frequency of sound waves around it. Two conditions must occur to successfully detect a Doppler shift event:
  • There must be motion of an object either towards or away from the receiver.
  • The motion of the object must cause a change in the ultrasonic frequency to the receiver relative to the transmitting frequency.
The ultrasonic detector operates by the transmitter emitting an ultrasonic signal into the area to be protected. The sound waves are reflected by solid objects (such as the surrounding floor, walls and ceiling) and then detected by the receiver. Because ultrasonic waves are transmitted through air, then hard-surfaced objects tend to reflect most of the ultrasonic energy, while soft surfaces tend to absorb most energy.
When the surfaces are stationary, the frequency of the waves detected by the receiver will be equal to the transmitted frequency. However, a change in frequency will occur as a result of the Doppler principle, when a person or object is moving towards or away from the detector. Such an event initiates an alarm signal. This technology is considered obsolete by many alarm professionals, and is not actively installed.

Microwave detectors

This device emits microwaves from a transmitter and detects microwaves at a receiver, either through reflection or reduction in beam intensity. The transmitter and receiver are usually combined inside a single housing (monostatic) for indoor applications, and separate housings (bistatic) for outdoor applications.
By generating energy in the microwave region of the electromagnetic spectrum, detector operates as an active volumetric device that responds to:
  • A Doppler shift frequency change.
  • A frequency phase shift.
  • A motion causing reduction in received energy.

Photo-electric beams

Photoelectric beam systems detect the presence of an intruder by transmitting visible or infra red light beams across an area, where these beams maybe obstructed. To improve the detection surface area, the beams are often employed in stacks of two or more. However, if an intruder is aware of the technology’s presence, it can be avoided. The technology can be an effective long-range detection system, if installed in stacks of three or more where the transmitters and receivers are staggered to create a fence-like barrier. Systems are available for both internal and external applications. To prevent a clandestine attack using a secondary light source being used to hold the detector in a ‘sealed’ condition whilst an intruder passes through, most systems use and detect a modulated light source.

Glass break detectors

A glass break detector is a device that detects a break in a pane of glass, alerting a burglar alarm. If it detects broken glass, and the alarm is set, then it sets off the alarm.
It used for internal perimeter building protection. When glass breaks it generates sound in a wide band of frequencies. These can range from infrasonic, which is below 20 Hertz (Hz) and can not be heard by the human ear, through the audio band from 20 Hz to 20 kHz which humans can hear, right up to ultrasonic, which is above 20 kHz and again cannot be heard. Glass break acoustic detectors are mounted in close proximity to the glass panes and listen for sound frequencies associated with glass breaking. Seismic glass break detectors are different in that they are installed on the glass pane. When glass breaks it produces specific shock frequencies which travel through the glass and often through the window frame and the surrounding walls and ceiling. Typically, the most intense frequencies generated are between 3 and 5 kHz, depending on the type of glass and the presence of a plastic interlayer. Seismic glass break detectors “feel” these shock frequencies and in turn generate an alarm condition.
Acoustic Glassbreak Detectors employ a microphone, which "listens" for the sound(s) created by breaking glass. These sounds are typically recorded, digitized and then compared to a library of other sounds/events to determine if in fact glass was broken or a false alarm occurred.
There are several types of window break detectors, one kind detects the vibrations of the window, and if the vibrations get too high/ the window breaks the alarm goes off. Basically the device tells whether or not the window is broken by measuring the vibrations. Another kind detects the noise of glass breaking.

Magnetic Door Contact
Magnetic Door Contact detectors identify intruders by using a magnet and reed switch mechanism. The reed switches are electrical contacts held open by the presence of a magnet. When a magnet attached to an opening door moves away from the reed switches in the alarmed sensor, the switches make contact with each other and trigger a radio frequency (RF) transmission to the system control panel. Information in the RF transmission identifies the type and location of the sensor.

Magnetic Door Contact Detectors can be surface-mounted or recessed. Absence of any external wiring provides the installer with unlimited scope to place the device in positions where it is hidden from view. The detector is a truly stand alone module containing the low power viper integrated circuit, identification and encoding electronics, scantronic transmitter, integral aerial and battery. 


Salient features include: 
Simple calibration 
Exclusive double knock facility at point of attack 
Wire free 
Scantronic 4600 series compatible 
Adjustable detection sensitivity 
Fully approved transmitter 
Integral magnetic door contact


LPG Gas Detector


LP gas (butane or propane) is the most common type of fuel used for cooking and heating worldwide. LPG leak can cause devastating explosions and consequences of a gas leak in both domestic and commercial situations are every bit as disastrous as those of a fire and can be avoided with the fitting of easy to use and cost effective detection equipment. 


Feature and Benefits are as follows:
Officially approved to BS7348 (The British Standards for Domestic Gas Detectors). 
Proven semiconductor sensor technology. 
230Vac or 12Vds versions. 
Relay output models are available. 
Suitable for home, caravan and commercial use. 
Easy to install and use with no maintenance.

Smoke, heat, and carbon monoxide detectors

Smoke Detectors provide the earliest practicable fire detection and warning. This system consists of smoke or heat detectors at designated locations, to detect smoke or heat at the earliest during any outbreak of fire. The various types of detectors used in this system are Photoelectric, Heat and Multisensing. The detectors are selected based on certain pre-determined parameters. On sensing fire the system initiates a warning alarm, thereby alerting the occupants.
Most systems may also be equipped with smoke, heat, and/or carbon monoxide (CO) detectors. These are also known as 24 hour zones (which are on at all times). Smoke detectors and heat detectors protect from the risk of fire and carbon monxide detectors protect from the risk of carbon monoxide.

Auto Dialer

The communicator / auto dialer is pre programmed to place 4 automatic calls to any pre set destinations, which could include the owner, other two important numbers and one to the Central Monitoring System (CMS). 


The salient features are:
Up to four keypads per control panel 
Full LCD status indication 
Illuminated keys 
On-board PA facility Entry / exit tones 
Programmable user strings 
Programmable backlight options for keypad and LCD display.

Outdoor

These types of sensors would be found most of the time mounted on fences or installed on the perimeter of the protected area.

Vibration (shaker) or inertia sensors

These devices are mounted on barriers and are used primarily to detect an attack on the structure itself. The technology relies on an unstable mechanical configuration that forms part of the electrical circuit. When movement or vibration occurs, the unstable portion of the circuit moves and breaks the current flow, which produces an alarm. The technology of the devices varies and can be sensitive to different levels of vibration. The medium transmitting the vibration must be correctly selected for the specific sensor as they are best suited to different types of structures and configurations.
More sophisticated sensors use piezo-electric components rather than mechanical circuits, which can be tuned to be extremely sensitive to vibration. These sensors are more durable and more resistant to tampering.
  • pros: Very reliable sensors, low false alarm rate and middle place in the price range.
  • cons: Must be fence mounted would be the main con. Its rather high price deters many customers, but its effectiveness offsets its high price.
The Salient feature are as follows: 


Removable Electronics 
Non gravity dependent 
Dual memory LED and relay 
Walk test facility 
Remote rest 
Dual stage sensitivity 
Sensitivity potentiometer 
LED lens relay auto resets 
Surface mount technology 
Anti condensation base 
Door contact option 
Double knock link

Passive magnetic field detection

This buried security system is based on the Magnetic Anomaly Detection principle of operation. The system uses an electromagnetic field generator powering with two wires running in parallel. Both wires run along the perimeter and are usually installed about 5 inches apart on top of a wall or about foot buried in the ground. The wires are connected to a signal processor which analyzes any change in the magnetic field.
This kind of buried security system sensor cable could be buried on the top of almost any kind of wall to provide a regular wall detection ability or be buried in the ground.
  • pros: Very low false alarm rate, can be put on top of any wall, very high chance of detecting real burglars.
  • cons: Cannot be installed near high voltage lines, radars, or airports.

E-field

This proximity system can be installed on building perimeters, fences, and walls. It also has the ability to be installed free standing on dedicated poles. The system uses an electromagnetic field generator powering one wire, with another sensing wire running parallel to it. Both wires run along the perimeter and are usually installed about 800 millimetres apart. The sensing wire is connected to a signal processor that analyses:
  • amplitude change (mass of intruder),
  • rate change (movement of intruder),
  • preset disturbance time (time the intruder is in the pattern).
These items define the characteristics of an intruder and when all three are detected simultaneously, an alarm signal is generated.
The barrier can provide protection from the ground to about 4 metres of altitude. It is usually configured in zones of about 200 metre lengths depending on the number of sensor wires installed.
  • pros: concealed as a buried form.
  • cons: expensive, short zones which mean more electronics (more money), high rate of false alarms as it cannot distinguish a cat from a human. In reality it doesn't work that well, as extreme weather causes false alarms.

Microwave barriers

The operation of a microwave barrier is very simple. This type of device produces an electromagnetic beam using high frequency waves that pass from the transmitter to the receiver, creating an invisible but sensitive wall of protection. When the receiver detects a difference of condition within the beam (and hence a possible intrusion), the system begins a detailed analysis of the situation. If the system considers the signal a real intrusion, it provides an alarm signal that can be treated in analog or digital form.

Microphonic systems

Microphonic based systems vary in design but each is generally based on the detection of an intruder attempting to cut or climb over a chainwire fence. Usually the microphonic detection systems are installed as sensor cables attached to rigid chainwire fences, however some specialised versions of these systems can also be installed as buried systems underground. Depending on the version selected, it can be sensitive to different levels of noise or vibration. The system is based on coaxial or electro-magnetic sensor cable with the controller having the ability to differentiate between signals from the cable or chainwire being cut, an intruder climbing the fence, or bad weather conditions.
The systems are designed to detect and analyse incoming electronic signals received from the sensor cable, and then to generate alarms from signals which exceed preset conditions. The systems have adjustable electronics to permit installers to change the sensitivity of the alarm detectors to the suit specific environmental conditions. The tuning of the system is usually accomplished during commissioning of the detection devices.
  • pros: very cheap, very simple configuration, easy to install.
  • cons: some systems has a high rate of false alarms because some of these sensors might be too sensitive. Although systems using DSP (Digital Signal Processing) have largely eliminated false alarms.

 Taut wire fence systems

A taut wire perimeter security system is basically an independent screen of tensioned tripwires usually mounted on a fence or wall. Alternatively, the screen can be made so thick that there is no need for a supporting chainwire fence. These systems are designed to detect any physical attempt to penetrate the barrier. Taut wire systems can operate with a variety of switches or detectors that sense movement at each end of the tensioned wires. These switches or detectors can be a simple mechanical contact, static force transducer or an electronic strain gauge. Unwanted alarms caused by animals and birds can be avoided by adjusting the sensors to ignore objects that exert small amounts of pressure on the wires. It should be noted that this type of system is vulnerable to intruders digging under the fence. A concrete footing directly below the fence is installed to prevent this type of attack.
  • pros: low rate of false alarms, very reliable sensors and high rate of detection.
  • cons: Very expensive, complicated to install and old technology.

Fibre optic cable

A fibre-optic cable can be used to detect intruders by measuring the difference in the amount of light sent through the fibre core. If the cable is disturbed, light will ‘leak’ out and the receiver unit will detect a difference in the amount of light received. The cable can be attached directly to a chainwire fence or bonded into a barbed steel tape that is used to protect the tops of walls and fences. This type of barbed tape provides a good physical deterrent as well as giving an immediate alarm if the tape is cut or severely distorted. Other type’s works on the detection of change in polarization which is caused by fiber position change.
  • pros: very similar to the Microphonic system, very simple configuration, easy to install. Can detect for distances of several km on a single sensor.
  • cons: high rate of false alarm or no alarms at all for systems using light that leaks out of the optical fiber. The polarization changing system is much more sensitive but false alarms depend on the alarm processing.

H-field

This system employs an electro-magnetic field disturbance principle based on two unshielded (or ‘leaky’) coaxial cables buried about 10–15 cm deep and located at about 2.1 metres apart. The transmitter emits continuous Radio Frequency (RF) energy along one cable and the energy is received by the other cable. When the change in field strength weakens due to the presence of an object and reaches a pre-set lower threshold, an alarm condition is generated. The system is unobtrusive when it has been installed correctly, however care must be taken to ensure the surrounding soil offers good drainage in order to reduce nuisance alarms.
  • pros: concealed as a buried form.
  • cons: affected by RF noise, high rate of false alarms, hard to install.

Hooter
The hooters offered are sophisticated, stylish and highly featured solution to external sounder requirements.
The features are: 

Easily mountable 
Rugged strobe with panaromic lens 
Sound output - 108 db - 113 db 
Selectable timer 
Dual ring mode 
Alternating comfort Leds 
Selectable sounder cut-off timer

System connections

The trigger signal from each sensor is transmitted to one or more control unit(s) either through wires or wireless means (radio, line carrier, infrared). Wired systems are convenient when sensors (such as PIRs, smoke detectors etc) require power to operate correctly, however, they may be more costly to install. Entry-level wired systems utilize a Star network topology, where the panel is at the center logically, and all devices "home run" its wire back to the panel. More complex panels use a Bus network topology where the wire basically is a data loop around the perimeter of the facility, and has "drops" for the sensor devices which must include a unique device identifier integrated into the sensor device itself (e.g iD biscuit). Wired systems also have the advantage, if wired properly, of being tamper-evident. Wireless systems, on the other hand, often use battery-powered transmitters which are easier to install, but may reduce the reliability of the system if the sensors are not supervised, or if the batteries are not maintained. Depending on distance and construction materials, one or more wireless repeaters may be required to get the signal reliably back to the alarm panel. Hybrid systems utilize both wired and wireless sensors to achieve the benefits of both. Transmitters, or sensors can also be connected through the premises electrical circuits to transmit coded signals to the control unit (line carrier). The control unit usually has a separate channel or zone for burglar and fire sensors, and better systems have a separate zone for every different sensor, as well as internal "trouble" indicators (mains power loss, low battery, wire broken, etc).

Alarm connection and monitoring

Depending upon the application, the alarm output may be local, remote or a combination. Local alarms do not include monitoring, though may include indoor and/or outdoor sounders (e.g. motorized bell or electronic siren) and lights (e.g. strobe light) which may be useful for signaling an evacuation notice for people during fire alarms, or where one hopes to scare off an amateur burglar quickly. However, with the widespread use of alarm systems (especially in cars), false alarms are very frequent and many urbanites tend to ignore alarms rather than investigating, let alone contacting the necessary authorities. In short, there may be no response at all. In rural areas (e.g., where nobody will hear the fire bell or burglar siren) lights or sounds may not make much difference anyway, as the nearest responders could take so long to get there that nothing can be done to avoid losses.
Remote alarm systems are used to connect the control unit to a predetermined monitor of some sort, and they come in many different configurations. High-end systems connect to a central station or responder (eg. Police/ Fire/ Medical) via a direct phone wire (or tamper-resistant fiber optic cable), and the alarm monitoring includes not only the sensors, but also the communication wire itself. While direct phone circuits are still available in some areas from phone companies, because of their high cost they are becoming uncommon. Direct connections are now most usually seen only in Federal, State, and Local Government buildings, or on a school campus that has a dedicated security, police, fire, or emergency medical department (in the UK communication is only possible to an Alarm Receiving Centre - communication direct to the emergency services is not permitted). More typical systems incorporate a digital telephone dialer unit that will dial a central station (or some other location) via the Public Switched Telephone Network (PSTN) and raise the alarm, either with a synthesized voice or increasingly via an encoded message string that the central station decodes. These may connect to the regular phone system on the system side of the demarcation point, but typically connect on the customer side ahead of all phones within the monitored premises so that the alarm system can seize the line by cutting-off any active calls and call the monitoring company if needed. Encoders can be programmed to indicate which specific sensor was triggered, and monitors can show the physical location (or "zone") of the sensor on a list or even a map of the protected premises, which can make the resulting response more effective. For example, a water-flow alarm, coupled with a flame detector in the same area is a more reliable indication of an actual fire than just one or the other sensor indication by itself. Many alarm panels are equipped with a backup dialer capability for use when the primary PSTN circuit is not functioning. The redundant dialer may be connected to a second phone line, or a specialized encoded cellular phone, radio, or internet interface device to bypass the PSTN entirely, to thwart intentional tampering with the phone line(s). Just the fact that someone tampered with the line could trigger a supervisory alarm via the radio network, giving early warning of an imminent problem (e.g., arson). In some cases a remote building may not have PSTN phone service, and the cost of trenching and running a direct line may be prohibitive. It is possible to use a wireless cellular or radio device as the primary communication method.

Broadband Alarm Monitoring

Increasing deployment of voice over IP technology (VoIP) is driving the adoption of broadband signaling for alarm reporting. Many sites requiring alarm installations no longer have conventional telephone lines (POTS), and alarm panels with conventional telephone dialer capability do not work reliably over some types of VoIP service.
Legacy dial up analog alarm panels or systems with serial/parallel data ports may be migrated to broadband through the addition of an alarm server device which converts telephone signaling signals or data port traffic to IP messages suitable for broadband transmission. But the direct use of VoIP (POTS port on premises terminal) to transport analog alarms without an alarm server device is problematic as the audio codecs used throughout the entire network transmission path cannot guarantee a suitable level of reliability or quality of service acceptable for the application.
In response to the changing public communications network, new alarm systems often can use broadband signaling as a method of alarm transmission, and manufacturers are including IP reporting capability directly in their alarm panel products. When the Internet is used as a primary signaling method for critical security and life safety applications, frequent supervision messages are configured to overcome concerns about backup power for network equipment and signal delivery time. But for typical applications, connectivity concerns are controlled by normal supervision messages, sent daily or weekly.

Listen In Alarm monitoring

Monitored alarms and speaker phones allow for the central station to speak with the homeowner and/or intruder. This may be beneficial to the owner for medical emergencies. For actual break-ins, the speaker phones allow the central station to urge the intruder to cease and desist as response units have been dispatched.

Alarm monitoring Services

The list of services to be monitored at a Central Station has expanded over the past few years to include: Access Control; CCTV Monitoring; Environmental Monitoring; Intrusion Alarm Monitoring; Fire Alarm & Sprinkler Monitoring; Critical Condition Monitoring; Medical Response Monitoring; Elevator Telephone Monitoring; Hold-Up or Panic Alarm Monitoring; Duress Monitoring; Auto Dialer tests; Open & Close Signal Supervision & Reporting; Exception Reports; and PIN or Passcode Management. Increasingly, the Central Stations are making this information available directly to end users via the internet and a secure log-on to view and create custom reports on these events themselves.

Alarm response

Depending upon the zone triggered, number and sequence of zones, time of day, and other factors, the monitoring center can automatically initiate various actions. They might be instructed to call the ambulance, fire department or police department immediately, or to first call the protected premises or property manager to try to determine if the alarm is genuine. They could also start calling a list of phone numbers provided by the customer to contact someone to go check on the protected premises. Some zones may trigger a call to the local heating oil company to go check on the system, or a call to the owner with details of which room may be getting flooded. Some alarm systems are tied to video surveillance systems so that current video of the intrusion area can be instantly displayed on a remote monitor, not to mention recorded.

Access control and bypass codes

To be useful, an intrusion alarm system is deactivated or reconfigured when authorized personnel are present. Authorization may be indicated in any number of ways, often with keys or codes used at the control panel or a remote panel near an entry. High-security alarms may require multiple codes, or a fingerprint, badge, hand-geometry, retinal scan, encrypted response generator, and other means that are deemed sufficiently secure for the purpose.
Failed authorizations should result in an alarm or at least a timed lockout to prevent "experimenting" with possible codes. Some systems can be configured to permit deactivation of individual sensors or groups. Others can also be programmed to bypass or ignore individual sensors (once or multiple times) and leave the remainder of the system armed. This feature is useful for permitting a single door to be opened and closed before the alarm is armed, or to permit a person to leave, but not return. High-end systems allow multiple access codes, and may even permit them to be used only once, or on particular days, or only in combination with other users' codes (i.e., escorted). In any case, a remote monitoring center should arrange an oral code to be provided by an authorized person in case of false alarms, so the monitoring center can be assured that a further alarm response is unnecessary. As with access codes, there can also be a hierarchy of oral codes, say, for furnace repairperson to enter the kitchen and basement sensor areas but not the silver vault in the butler's pantry. There are also systems that permit a duress code to be entered and silence the local alarm, but still trigger the remote alarm to summon the police to a robbery.
Fire sensors can be "isolated", meaning that when triggered, they will not trigger the main alarm network. This is important when smoke and heat is intentionally produced. The owners of buildings can be fined for generating False alarms that waste the time of emergency personnel.

False / no alarms

System reliability can be a problem when it causes nuisance alarms, false alarms, or fails to alarm when called for. Nuisance alarms occur when an unintended event evokes an alarm status by an otherwise properly working alarm system. A false alarm also occurs when there is an alarm system malfunction that results in an alarm state. In all three circumstances, the source of the problem should be immediately found and fixed, so that responders will not lose confidence in the alarm reports. It is easier to know when there are false alarms, because the system is designed to react to that condition. Failure alarms are more troublesome because they usually require periodic testing to make sure the sensors are working and that the correct signals are getting through to the monitor. Some systems are designed to detect problems internally, such as low or dead batteries, loose connections, phone circuit trouble, etc. While earlier nuisance alarms could be set off by small disturbances, like insects or pets, newer model alarms have technology to measure the size/weight of the object causing the disturbance, and thus are able to decide how serious the threat is, which is especially useful in burglar alarms.

False-Alarm Reduction

Home and business owners can now choose a new type of keypad control panel designed to help reduce false alarms.
Based on a standard called CP-01-2000, developed by the American National Standards Institute (ANSI) and Security Industry Association (SIA)) , the new generation of keypad control panels takes aim at user error by building in extra precautions that minimize unwarranted dispatch of emergency responders.
Some of the features of CP-01 keypads include a progress annunciation function that emits a different sound during the last 10 seconds of delay, which hastens exit from the premises. Also, the exit time doubles if the user disables the pre-warning feature.
Other "rules" address failure to exit premises, which results in arming all zones in Stay Mode and a one-time, automatic restart of exit delay. However, if there is an exit error, an immediate local alarm will sound.

Cross zoning reduces alarms

Cross zoning is an innovative alarm-system strategy that does not require a new keypad. Using multiple sensors to monitor activity in one area, advanced software analyzes input from all the sources.
For example, if a motion detector trips in one area, the signal is recorded and the central-station monitor notifies the customer. A second alarm signal - received in an adjacent zone in close time proximity, is the confirmation the central-station monitor needs to request a dispatch immediately. This builds in increased protection and a fail safe should a door blow open or a bird rattle an exterior window.

Enhanced Call Verification

Enhanced Call Verification (ECV) helps reduce false dispatches while still protecting citizens. ECV requires central station personnel to attempt to verify the alarm activation by making a minimum of two phone calls to two different responsible party telephone numbers before dispatching law enforcement to the scene.
The first alarm-verification call goes to the location the alarm originated. If contact with a person is not made a second call is placed to a different number. The secondary number, best practices dictate, should be to a telephone that is answered even after hours, preferably a cellular phone of a decision maker authorized to request or bypass emergency response.

Video verification

Video verification documents a change in local conditions by using cameras to record video signals or image snapshots. The source images can be sent over a communication link, usually an Internet protocol (IP) network, to the central station where monitors retrieve the images through proprietary software. The information is then relayed to law-enforcement and recorded to an event file, which can later be used as prosecution evidence.
An example of how this system works is when a passive infrared or other sensor is triggered a designated number of video frames from before and after the event is sent to the central station.

A second video solution can be incorporated into to a standard panel, which sends the central station an alarm. When a signal is received, a trained monitoring professional accesses the on-site digital video recorder (DVR) through an IP link to determine the cause of the activation. For this type of system, the camera input to the DVR reflects the alarm panel’s zones and partitioning, which allows personnel to look for an alarm source in multiple areas.

SSA Integrate is Certified installer for Texecom Intrusion product in India.