Showing posts with label BLE. Show all posts
Showing posts with label BLE. Show all posts

Monday, August 1, 2022

Control physical access to rack level

Control physical Access to Rack Level 

In our networked and internet-dependent world, securing personal and business data from theft, hacking and other forms of cybercrime has become an issue of paramount importance – and the world’s data centers, where data has its physical presence, are key points where multiple layers of security need to be established and sustained. Electronic locks offer audit trail reporting capabilities and can also be set up to provide local alerts, including indicator lights, beacons or alarms.

Securing information within the data centre presents heightened physical security and access control challenges. Heavy-duty perimeter security and room level access control prevents access to the building and server rooms, but once inside, data storage equipment may not include that same level of security. In some co-location centres for instance, cabinets containing particularly sensitive data are protected by a chain link fence enclosure; however, these cabinets are still at risk should an unauthorised individual gain access to that enclosure.

For complete physical security, the actual server cabinets should be secured to the same degree as the data centre itself. Verification of credentials for access control and, where required, auditing rack-level access can prevent costly data breaches and stiff penalties for non compliance. Data centre managers can avoid these risks by incorporating intelligent, reliable electronic locking systems at the racklevel to protect access to sensitive information.

Extending physical security to the rack level

Effective rack-level access control systems are specifically designed for server cabinets with a flexible, open architecture that allows them to be easily integrated with any existing security system. An effective physical security system is typically comprised of three key elements: user interface, intelligent lock, and remote control and monitoring. Many data centers focus security efforts on access control to the grounds, the buildings and the secure areas within:

·       Access to the building is often gated, with exterior physical protection elements to secure the entire site and requires a guard to verify and document entry through the gate.

·       Once an individual enters the facility, they typically sign in with a live guard and receive a credential for access to specific areas.

·       In some facilities, access to a specific floor or enclosure area is further controlled by a “man trap” with two sets of doors accessed via an electronic credential, either RFID or biometric.

Electronic access solutions, like electronic locks and latches, offer a modular security solution designed for simple integration into Data Center Infrastructure Management (DCIM) systems and existing server rack enclosure designs.

Electronic Access Solutions (EAS) typically consist of four main components:

·       Electromechanical Lock or Latch– The most critical component of any electronic access system,  this mechanism performs the electromechanical locking or unlocking function upon receipt of a valid electronic signal and provides an output of its status to external monitoring systems.

·       Access Control Device – The access controller acts as the human interface, allowing the electronic lock  to be remotely operated through a variety of options, such as digital keypads, biometrics, RFID readers, and other wireless communication devices such as  BLUETOOTH enabled smartphones and tablets.

·       Remote Monitoring – Electronic access solutions have the unique ability to capture an electronic "signature" for each access attempt. This info, together with additional security and environmental data, can be output to a variety of devices, from simple indicator lights to networked, software-based remote monitoring systems.

·       Manual Override – In some cases, an override system is required to provide access in the event of a system power failure. This override system can be mechanical, providing direct mechanical actuation of the lock, or electrical, providing external power in the event of a system power failure.

The key element of effective rack level electronic access systems is the use of intelligent electronic locks that restrict access through the validation of user credentials. Electronic locks can be integrated with a variety of rack level access control devices, such as digital keypads, RFID card readers, biometric readers and electronic key systems.

Suprema Mobile Access allows you to use your own smartphone as a key to access doors, facilities, and more. By using your smartphone as a credential, managing and using an access card becomes easier, faster, and safer. The smartphone can then send audit trail data wirelessly to the cloud via a cellular or Wi-Fi connection for audit trail reporting. This unique solution provides remote access control without the need for a physical network connection. Mobile Access supports both NFC and BLE for full compatibility with various types of smartphones.

Additionally, maintaining automatic digital documentation is more convenient than manually tracking and recording access. Rather than keeping track of mechanical keys – particularly in a co-location setting – electronic access allows administrators to upload (or delete) electronic credentials from their user database. With networked systems, these updates to the approved list can be made remotely, from anywhere in the world. With cloud-based solutions, this can be accomplished wirelessly, using Bluetooth enabled mobile devices.

Integrating rack level EAS into existing data centers

The entire IT and data center industry must continue to apply every tool available to secure personal and corporate data and applications from identity theft, malware, hijacking and other hacking attacks. Using electronic access solutions to secure the server racks is the final component in creating a fully secure data center. Rack level electronic access provides a controlled physical security solution that, when integrated into existing security and monitoring systems, provides a complete end-to-end data center security solution.

Cost-effective rack level security solutions are available, depending on the specific application. For example

·       Self-contained solutions that are generally battery-operated and offer simple, drop-in installation and programming to provide integrated access control and electronic locking in a single self-contained device.

·       Standalone solutions that offer basic plug-and-play access control without the need for software or network administration where remote control and monitoring is not needed.

·       Wireless remote controlled solutions that leverage NFC and BLE connectivity with cloud based web portal credential management and monitoring to provide the simplicity of a standalone system with the benefits of a networked control system

·       Integrated solutions that can be combined with building access control and monitoring systems to incorporate cabinet-level access control into existing security systems.

·       Independent networked solutions that can be used to monitor and manage rack access across networks from a host computer for remote system configuration, access control and the monitoring of multiple access points.

Streamlining migration between platforms

Rack-level electronic locks may incorporate an RFID reader with industry standard Wiegand outputs that can tie into any traditional building system. When integrating rack-level access control solutions, there may be a need to support both proximity and smart card RFID protocols. By integrating an industry standardised electronic locking and access control solution that reads multiple RFID formats, data centre managers can leverage their existing building security system for rack-level access control regardless of card technology used. This type of solution offers simplified installation, allowing personnel to use their existing credentials to access multiple areas within the data centre – from the server room to the rack level.

Physical access control across the facility

In today’s highly regulated data centre environment, access control and monitoring at the rack level are a must. While significant resources are dedicated to fighting online cyberattacks, physical protection of stored data is equally as important. The need for increased security and compliance with a myriad of regulations necessitate access control and monitoring capabilities for the actual cabinets where data is stored.

Data centre managers can achieve physical access control by implementing electronic access solutions, which offer solutions for audit trail maintenance and compatibility with existing facility-wide security systems. Protecting data within facilities requires the same level of access control for racks as the buildings that house them.

Organizations should monitor the safety and security of the data center rack room with authenticated access through the following systems:

·        Closed-circuit television (CCTV) camera surveillance with video retention as per the organization policy

·        Vigilance by means of 24×7 on-site security guards and manned operations of the network system with a technical team

·        Periodic hardware maintenance

·        Checking and monitoring the access control rights regularly and augmenting if necessary

·        Controlling and monitoring temperature and humidity through proper control of air conditioning and indirect cooling

·        Uninterruptible power supply (UPS)

·        Provision of both a fire alarm system and an aspirating smoke detection system (e.g., VESDA) in a data center. A VESDA, or aspiration, system detects and alerts personnel before a fire breaks out and should be considered for sensitive areas.

·        Water leakage detector panel to monitor for any water leakage in the server room

·        Rodent repellent system in the data center. It works as an electronic pest control to prevent rats from destroying servers and wires.

·        Fire protection systems with double interlock. On actuation of both the detector and sprinkler, water is released into the pipe. To protect the data and information technology (IT) equipment, fire suppression shall be with a zoned dry-pipe sprinkler.

·        Cable network through a raised floor, which avoids overhead cabling, reduces the heat load in the room, and is aesthetically appealing.

 

Wednesday, September 1, 2021

IoT is future of Video Technology

IoT is future of Video Technology 

The Internet of Things is about connecting network-enabled devices and exchanging data between them. This offers great potential for improving processes wherever information needs to be exchanged securely and quickly. It enable devices and add much more value than they have had so far. For this, there is no better example than security cameras. With IoT we’re able to push and pull nuggets of intelligence from sources we never considered before: environmental sensors, pressure plates, door lock timers and much more. It’s helped us break through the constraining mindset that security systems are strictly single-purpose.

Acting alongside other sensors, such as motion or smoke detectors, security cameras have been in use for a long time, however without being connected to each other through data networks. Growing demands for smart video surveillance in public spaces, commercial buildings, public transport and other areas and the rise of IoT will drive for the further integration of these cameras systems. Let's see how video surveillance has evolved to this day and where the journey is heading.

The past: standard security surveillance systems

Closed-circuit television systems (CCTV) have demonstrated that they can do what they're supposed to: give humans a better eyesight on the security situation in order to reduce security incidents. CCTV cameras can only show and record video footage and not much more beyond that. As they do not understand what they are watching, they are also unable to do anything about it.

To fight theft, violence, vandalism or fire effectively, cameras must be able to detect and interpret such incidents by themselves. They must also have the capability to cooperate with other systems, such as alarm systems.

This is where the Internet of Things comes into play. It connects network-enabled cameras with other devices and systems that perform other tasks and turns security surveillance into smart safety and security management.

Video surveillance systems built the largest segment in our country. That’s why today modern camera systems are widely used in many areas of life, retail, commercial buildings, stadiums, transportation and public spaces in cities.

Security cameras frame the next technological step in the security surveillance evolution…

The future: smart security surveillance

The times when video surveillance systems only deliver video that must be continuously observed by humans are over. Machines able to record and analyse video data in one go are already available, and they can provide security managers with deep insights instead of single pieces of information.

This will significantly improve security and security-related processes in many areas and industries by enabling faster and more insightful response to any sort of incidents.

Future security surveillance essentially combines 3 technologies that will completely change the game: computer vision, automation and deep-learning, driven by powerful processors and apps on cameras in the IoT. Let's take a quick look at these technologies.

Data is the new digital oil

All these devices at their most basic, simply collect data. This information is used to streamline, manipulate and measure the way you interact with the world. From your online habits to your physical day-to-day routine – every single thing you do or don’t do is, or will very soon be, monitored.

In the case of connected ‘things’ – now known as ‘smart devices’ due to their ability to collect and transmit information – each one sends bytes of data over the internet to an application that interprets and collates that data into valuable insights. Your service provider and the product manufacturer can then use those insights to achieve a variety of objectives – from improving the device’s performance, and your experience of using it, to identifying how or when they should be selling you extra services or products.

What precisely is connecting all of these IoT things

2G, 3G and 4G are terms that we all know and understand well but how about radio, Wi-Fi, NB-IoT or LPWAN? There are various types of connectivity that can underpin the Internet of Things and these latter ones are arguably the most widely used outside of pure cellular connectivity.

When we talk about the ‘internet of things’ it’s not immediately clear which type of ‘internet’ connectivity we’re referring to because many devices are now being designed to intelligently select the connectivity that best suits its needs, based on the following three things:

Power consumption – How much power does the device or sensor need to operate?
Range – Does it need to connect and send data over great distances?
Bandwidth – Will it transmit small or large amounts of data e.g. low bandwidth and high bandwidth?

Two of the most commonly utilised connectivity networks are:

Cellular

Most of us are very familiar with cellular connectivity as it is used around the world to connect our mobile phones to the internet. IoT devices also use cell towers to connect to a cellular network. Cellular connectivity is prolific, has excellent range and the capacity to send high volumes of data over the network but uses a lot of power and, therefore, is not ideal for IoT devices which don’t have access to an immediate power supply and need a long battery life to operate over long periods of time, for instance in rural or agricultural areas.

LPWAN

‘LPWAN’ stands for Low-Power Wide-Area Network, which is a type of radio technology and is so far one of the most ideal connectivity networks available to IoT sensors that are deployed in areas where there is a lack of range. These devices are usually battery-powered and send very small packets of data over the network. This connectivity is ideal when it comes to monitoring utilities such as water, gas and electricity using smart meters and for farming and agriculture to check on water quality, sensing soil moisture and tracking livestock.

Computer Vision

Computer vision is becoming smarter because of more sophisticated algorithms, faster devices, larger networks and access to a wider range of data sets through IoT. This allows machines to “see” and analyze in real time.

“Deep Learning and general AI techniques within computer vision, makes possible what would be impossible to do by the naked eye.” - Matt Candy, Global leader for IBM’s iX creative solutions.

Example: Detect fire and smoke within seconds

Many threats, such as smoke, are difficult for the human eye to detect in videos, especially in poor lighting conditions. Seconds later, however, a fire may have broken out. Security cameras equipped with smoke and fire detection can alert at an early stage and activate the proper safety measures without any human assistance.

Source: Bosch Security Systems

Automation

Speed plays an important role in safety and security. The faster you react to security incidents, the greater the chance of preventing or at least reducing damage. In case of theft in a store, every second counts, because criminals may disappear before security personnel can intervene.

Standard security surveillance via CCTV wastes valuable time because reaction paths between machines and human operators are too long. Smart cameras take a shortcut by saving staff from interpreting videos. They immediately deliver notifications or initiate appropriate actions themselves.

Example: Detect and catch thieves in retail

The "AI Guardman" security camera helps shopkeepers identify potential thieves in time. Software installed on the camera scans live video streams and analyzes the poses of any person it can see. This data is automatically matched against predefined "suspicious" behavior. When it sees something remarkable, it alerts onsite personnel via app for double checking.

Deep learning

“Cameras capture the video, but video analytics captures the value.” (IBM)

Using computers for video analysis is not a new idea. However, there is a problem that slows the development of video analytics: mobile video made on drones or vehicles is full of dynamic variables that can confuse even the most intelligent computers. That's why many companies and startups are working on smart systems using self-learning algorithms.

Deep learning is a machine learning method based on artificial neural networks. Video analytics, which gives security cameras the ability to analyze video data on board, is one application of deep learning. Another application is automation, which embeds video analysis into processes.

The good thing about deep learning is that developers of video analytics apps for security cameras don't have to reinvent the wheel themselves. There are already sophisticated frameworks that simplify developing deep learning models, such as Google's Tensorflow, Microsoft’s Custom Vision and IBM’s PowerAI Vision.

Example: Training object recognition using IBM’s PowerAI Vision

To determine whether workers are complying with safety regulations such as wearing helmets, security cameras need to know what helmets look like. In case a person is not wearing a helmet, a camera could react and alert. This is what a simplified training process looks like…

Source: IBM

Flood Management Assistance

As recent hurricanes and floods have shown, water damage can be devastating to a community. That’s why some municipalities are using their city surveillance cameras in conjunction with water sensor to proactively address the problem.

Water sensors collect data from multiple sources such as rain gutters, sewer systems and pump stations, in order to monitor fluctuations in water levels and water quality. If an alert triggers, having a network camera in proximity to visually verify the situation helps responders determine the best course of action. For instance, if multiple water detection sensors trigger alerts simultaneously or sequentially over a large area it’s probably due to natural runoff from recent rainfall. But without eyes on the scene, how can you be sure?

Network camera adds another dimension and timeliness to flood management by helping responders investigate and identify the cause of a trigger remotely. It might be a fire hydrant spewing water, a water main break or even a chemical spill. With video streaming live to the command center, staff can remotely inspect the area, determine the cause of the trigger and decide whether remediation is required, thus avoiding the expense of dispatching an investigative crew to a non-event.

Environmental Control Assistance

Data centers house the lifeblood of a business so it’s no wonder why companies work hard to protect them. We’re all familiar with the integration of network cameras with access control systems to visually verify who is actually using the credentials. 

But there’s another aspect to protecting data centers and that’s environment control. Data centers need to maintain optimum humidity and temperature for the racks of electronics. When environmental sensors in the facility detect out-of-norm ranges technicians can remotely command a network camera to zoom in on the gauges and help them determine whether remediation might be necessary.

Coupling network cameras with other sensors in the data center can provide visual confirmation of other conditions as well. For instance, every time a data rack door-open-close sensor detects an event it can trigger the camera to pan to the location and stream video to security. Some data centers employ weight sensors at the doorway to weigh personnel and equipment as they enter the room and when they exit to ensure no additional hardware is being taken out of the facility or left inside without permission. Any discrepancy would trigger the camera to zoom in for a close-up of the individual’s face and send a visual alert and ID information to security.

Roadway Management & Parking Assistance

Network cameras have long played a part in city-wide traffic management. Adding video analytics and integration with network sensors, makes those cameras that much smarter and versatile. They can detect cars driving in bike lanes or driving in the wrong direction and capture license plates of offenders. Their ability to detect anomalous traffic flow patterns can be integrated with car counting sensors, networked electronic road signs and traffic light systems to automatically redirect vehicles to alternate routes.

They make great, intelligent parking lot attendants, too. Working in conjunction with weight sensors network cameras can count vehicles coming into and leaving a lot or garage and verify when the facility has reached capacity. License plate recognition and video analytics can be used to ascertain that a vehicle entering a reserved parking space doesn’t match the credentials and vehicle attributes in the database.

With the addition of noise sensors and audio analytics, network cameras can improve roadway and parking facility safety by detecting and identifying specific sounds – breaking glass, car alarms, gun shots, and aggressive speech – and triggering a visual alert to first responders.

Shopper Experience Assistance

In the early days of online shopping, e-tailers designed their sites to replicate the in-store customer experience. In an ironic turn of events, today brick-and-mortar stores are trying to mirror the online shopping experience. To do so, they’re turning their security systems into adjunct sales assistance. With network video and audio system automation they can recognize and acknowledge loyal customers with personal greetings.

With heatmapping analytics they can measure how much time a customer spends in a specific department or observe how they walk through the aisles of the store. They can track shopping behaviors such as items looked at that made it into the cart or didn’t, or whether a customer actually checked out or left the merchandise behind. By capturing these shopping patterns and trends retailers can shape a more positive, more profitable customer shopping experience.

For instance, integrating video analytics with point of sale systems and RFID sensors on merchandise tags can result in timely alerts to sales associates to recommend additional merchandise. This is a case of emulating how e-tailers let the customer know that other customers who bought X often also purchased items Y and Z. Or to avoid disappointing customers due to stock outages, retailers are linking weight sensors and video analytics to make sure their shelves are well-stocked and if not, quickly alert associates to what items need to be restocked.

Capturing Business Intelligence

Retailers are also using video cameras to monitor checkout queues and trigger automated announcements over the public-address system, closed system such as smartphones or other wireless communications devices that checkers are needed rather wait for a person to call for backup.

They’re applying people counting video analytics to checkout activity to create rules-based consistency in customer service. While retailers will always use their surveillance camera for loss prevention, they’re finding that integrating traditional technology in new ways can yield even bigger returns.

Linking network video surveillance, video analytics, network communications system and sensors with point-of-sale systems and customer loyalty databases, retailers are capturing the business intelligence they need to get back in the game and make brick-and-mortar a greater overall experience than online shopping.

A Natural Cross-Over Technology

This trend towards integration has forever changed how organizations view their investment in security technology. The intelligence and versatility of a tool that can see, verify and analyze what’s happening in real-time is spurring users to tap its cross-over potential for a host of other tasks that could benefit from more astute situational awareness – everything from manufacturing and equipment maintenance to logistics, inventory control and beyond.

IoT laid the groundwork for network security solutions to seamlessly integrate with other IP-based technologies, sensors and programs. How we capitalize on that connection is only limited by our imagination.


Sunday, February 14, 2021

Touchless Access Technology

Touchless Access Technology 

THE business landscape changing so dramatically over the past few months — possibly irrevocably — the task for many in security, including for consultants, integrators, dealers and manufacturers. As businesses and organizations begin to reopen, many are rethinking the way they budget for security, including access control, video surveillance and intrusion Alarm.

It’s amazing that a microscopic virus from China could virtually bring the world to a standstill. The 2020 global pandemic has reshaped the way people work, learn and play on every conceivable level. In addition to the devastating impact on global health and safety, COVID-19 has infected the health of the global economy.

The growing call to return to work will surely accelerate many of the social distancing, sterilization and occupancy issues that we are currently facing. Hopefully, modern medicine will rise to the challenge sooner than later with a COVID-19 vaccine, but this may take some time even with accelerated testing and approvals.

Commonly touched items that can cause the spread of coronavirus (and other infectious disease) can include things like elevator buttons, ATM and checkout keypads, door knobs and handles, keyboards and mice, and door/entry access control panels — just to name a few. When you think about all of the “touchable” items that you interact with each day it becomes a daunting task to stay away from them and feel safe, clean and virus-free. Well, it's no surprise that right now, businesses are feeling the need to provide solutions and upgrade their safety and security as the workforce begins to come back to the office or plan for that to happen soon.

By employing touchless credentials such as face recognition, proximity devices, or mobile credentialing, existing and new access control systems can easily be enhanced to provide a fast and efficient means of allowing authorized individuals hands-free entry and egress to a facility helping prevent the spread of contagions that can impact the health of both individuals and businesses. Taking the role of access control further, platforms with open architecture can integrate new thermal detection solutions to instantly identify the surface temperature of individuals.

Types of touchless technology

Businesses going touchless isn’t new—despite how relevant it is lately. In fact, touchless technology, from gesture sensors to voice recognition, has been widely used since the late 1980’s when automatic faucets and soap dispensers became popular in public restrooms. Today, you likely experience touchless technology multiple times a day such as walking through an automatic door, or asking Siri to set your alarm while your phone is sitting across the room from you.

Sign-in process

Touchless technology isn’t only about hygiene and safety. It’s also a way to show that your business is forward-thinking and modern. After all, who likes being slowed down by an old-school pen and paper sign-in sheet or a clipboard with long legal documents to read through?

The answer: no one. That’s why we have thought through how to make the sign-in experience seamless and touch-free. With a touchless visitor sign-in, guests can pre-register on their phone or computer before their arrival; scan a QR code at check-in; and be off to see their host in no time.

For modern offices, creating a touchless experience shows that you’ve thought of every last detail of your visitor experience and have made steps to take the burden off of guests when they come onsite. By doing that, you save your visitors time once they arrive so they’re not bothered with sign-in and can more quickly get to who they’re there to see.

Plus, while having one visitor come on site might seem simple, there’s often a lot of info you’ll need to collect from them. Instead of asking for this information during sign-in, you can collect essential information about your guest and take care of any additional actions before the visit, rather than frantically trying to solve issues while your guests wait in your lobby.

Going touchless is another way to help your visitors, and your entire office, stay healthy. By going touchless, you’re able to minimize the spread of germs and make sure you’re taking care of everyone in your space. 

Gesture recognition

Gesture recognition is the most common form of no-touch technology. Users can do simple gestures to control or interact with devices without touching them. Waving your hand to trigger an automatic door, for example, removes the need to touch handles or a physical button. Users are positively identified with a simple wave of either their right or left hand, in any direction. The touchless technology copes with wet and dry fingers, eliminates ghost images left on the scanner and mitigates hygiene concerns. The high speed, contactless acquisition capability allows users to remain in motion while being identified. Faster access control and time & attendance transactions reduce overall costs and increase employee productivity.

The system uses the passenger's unique Aadhaar identification number to biometrically authenticate passengers in real time, from arrival at the airport through boarding. Each checkpoint features high-speed and touchless biometric technology to facilitate the passenger processing. In less than a second, this device captures four fingerprints and matches them against the Aadhaar database.  An automated process generates considerable time savings for an airport like Bengaluru, which experienced a 22% increase in passengers in 2016, rising to 22 million. Passengers will be able to pass these checkpoints much quicker, and no longer have to constantly show their ID documents & boarding pass/e-ticket.

Bengaluru is the first airport to use a biometric identification process based on Aadhaar ID numbers, offering a thoroughly modern passenger experience that will contribute to the digital transformation of India. Indian passengers with a driver license (which also contains their fingerprints), and passengers with a biometric passport from other countries can also take advantage of this e-boarding system. When checking in, they are assisted by a police officer, who scans their passport and boarding card, and saves their fingerprints to ensure traceability.

Examples of this include smart lights that turn on when you walk into a room or automatic doors that you see at grocery stores, hotels, and commercial buildings.

Voice recognition

Voice recognition systems let users interact with technology simply by speaking to it. This has become popular especially in our homes. We can make hands-free requests, set reminders, and perform other simple tasks by talking to Apple’s Siri, Amazon’s Alexa, or the Google Assistant. You’ll be able to use an app to switch on light, or if that sounds a little awkward, even your voice – most systems will integrate with a virtual assistant such as Google or Amazon. One thing to check is that your lighting is compatible with the virtual assistant you use, as not all bulbs work with all systems.

Dozens of companies now offer smart door locks that are controlled via an app. With many of them, you can even control access with your voice using virtual assistants such as the Amazon Alexa®.

It’s also possible, with many models, to send electronic keys to friends and guests when they visit. These keys can be timed to stop working once they leave, giving you peace of mind.

With most virtual assistants, you’ll even be able to remotely operate your lights and set timers so it appears you are home even if you’re away. You can also set routines, so that the house lights up whenever you return home, and switches everything off as you retire to bed for the night.

Most smart TVs integrate with a virtual assistant, so you can turn on your TV or change channels using your voice – a particularly useful feature when you inevitably lose the remote down the back of the sofa, so it’s useful long after COVID-19 is a distant memory.

Facial recognition

Even before the COVID-19 pandemic, the touchless nature of facial recognition as an access credential was gaining traction with physical and cyber security professionals. By using an individual’s face as an access control credential, facial recognition eliminates the need and expense of physical cards and proximity devices, or the need to physically enter PIN codes. In addition, facial recognition readers meet the new emerging need to limit physical exposure to germs and viruses by offering a highly accurate touchless access control credentialing solution. 

As a workforce management tool, facial recognition helps preserve the health of employees checking into work, while providing management with an infallible means of documenting employee time and attendance while providing a detailed history of overall workforce activity and individual personnel tracking. Both of which have been longstanding challenges due to easily compromised time tracking systems and practices. Now, nothing is left to question based on hard data. 

With the growing popularity of facial recognition technology, there are many choices already available with more undoubtedly on the way. Selecting the right solution for your specific access control and/or workforce management application is dependent on a very wide range of variables. But there are a few core characteristics that you should look for when evaluating facial recognition readers.

Most facial recognition terminals employ some form of IR (Infrared) technology to help ensure high visibility by the unit’s image sensor. This often limits where the unit can be installed such as outdoors or near windows due to strong ambient light. More advanced facial recognition readers employ as many as 80 wide-angle near infrared LEDs and 60 narrow-angle near infrared LEDs, allowing the unit to recognize faces even in full daylight and brightly lit environments (not direct sun). This enables installation at indoor locations near windows, lobbies and building entries.  

Another facial recognition reader advancement to look for involves three-dimensional pixel intensity analysis. Ambient lighting contains ultraviolet rays which can negate near infrared LED lighting, and can also cast shadows making it difficult for a facial recognition reader to pinpoint the facial recognition points required for identification and authentication. Three-dimensional pixel intensity distribution analysis minimizes the effects of ambient light when acquiring facial images by minimizing lighting contrasts. As a result, it is easier for the algorithm to recognize the shape of the face enabling it to extract more facial features and create higher quality face templates, which are critical for accurate facial recognition. 

The angle and position of a facial recognition reader directly impact the performance of the unit. Facial recognition readers with different viewing angles for built-in visual and infrared cameras allows users to stand at positions that are most suitable for facial recognition with little or no effort of contortions. This results in a faster, more comfortable, and convenient user experience. 

It is most important that the facial recognition readers you evaluate are capable of analyzing faces in real time to maintain fluid entry/egress even during high volumes of employee traffic. Hardware-dependent live face detection systems employing technologies such as facial thermogram recognition and facial vein recognition require expensive hardware components, provide less accurate matches and slower authentication performance, which is counterintuitive for mainstream access control and workforce management applications. 

Thermal Camera integration is expected to enhance security and safety at sites by combining face recognition and skin temperature measurement with facial recognition hardware unit. It increased the accuracy and consistency of the temperature measurement by using the face recognition algorithm to pinpoint the upper area of the face. It displays skin temperature and thermal image of a subject’s face on its intuitive GUI, giving audio and visual alerts when higher than threshold temperature is detected.

Personal devices

For technology to be completely touch-free it must operate without the need for physical contact, like in the examples above. However, the introduction of smartphones and other personal devices have made nearly touch-free technology possible as well. Anything that operates at the command of your own personal device allows you to avoid touching public surfaces. The emergence of smartphones using iOS and Android is rapidly changing the landscape of the IT industry around the world. Several industries, such as digital cameras, car navigation, MP3, and PNP, have been replaced by equivalent or even better performance using smartphones. Smartphones provide increasing portability by integrating the functions of various devices into a single unit which allows them to connect to platforms with network-based services and offer new services and conveniences that have never been experienced before.

The combination of smartphones and access cards is creating a new value that goes beyond the simple convenience of integration enhancing the ability to prevent unauthorized authentication and entrance. People sometimes lend their access cards to others, but it is far less likely they might lend their smartphone with all their financial information and personal information – to another person. This overcomes an important fundamental weakness of RF cards.

Another valuable aspect of mobile credential is that it makes it possible to issue or reclaim cards without face-to-face interaction. Under existing access security systems, cards must be issued in person. Since card issuance implies access rights, the recipient’s identification must be confirmed first before enabling the card and once the card has been issued, it cannot be retracted without another separate face-to-face interaction. In contrast, mobile access cards are designed to transfer authority safely to the user's smartphone based on TLS. In this way, credentials can be safely managed with authenticated users without face-to-face interaction.

Mobile cards can be used not only at the sites with a large number of visitors or when managing access for an unspecified number of visitors, but also at the places like shared offices, kitchens and gyms, currently used as smart access control systems in shared economy markets.

While NFC could be an important technology for mobile credential that is available today on virtually all smartphones, differences in implementation and data handling processes from various vendors prevents universal deployment of a single solution to all devices currently on the market.

Accordingly, Bluetooth Low Energy (BLE) has been considered as an alternative to NFC. Bluetooth is a technology that has been applied to smartphones for a long time, and its usage and interface are unified, so there are no compatibility problems however, speed becomes the main problem. The authentication speed of BLE mobile access card products provided by major companies is slower than that of existing cards.

AirFob Patch addresses the need for technological improvements in the access control market in a direct, cost effective, and reliable way – by offering the ability to add high-performance BLE to existing card readers – enabling them to read BLE smartphone data by applying a small adhesive patch approximately the size of a coin.

This innovative breakthrough applies energy harvesting technology, generating energy from the RF field emitted by the existing RF reader – then converting the data received via BLE back into RF – and delivering it to the reader.

“For Indian workers to return safely back into office buildings, there must be a comprehensive system in place that integrates technology and new safety protocols both for the building and for tenant spaces alike. It can't be every building owner, tenant and occupant for themselves. We are all in the business of public health now to protect each other’s lives and help India get back to work”. - Arindam Bhadra

Iris

Every human iris has its own unique traits. An iris scanner identifies pits, furrows and striations in the iris and converts these into an iris code. Comparing this code to a database subsequently determines whether to allow access. Iris recognition terminals provide 100% touchless user authentication for a variety of applications, spanning access control, time & attendance, visitor management, etc.

Touchless Switches

Touchless wall switch makes opening a door simple and germ free. Blue LED back-lighting highlights the switch at all times, other than during activation. This provides a visual reference of the switch’s location in low light conditions. Its low-profile design makes it blend into your wall.

Touchless Visitor Management 

The visitor management system is the first point of contact for every visitor. To help maintain the spread of COVID-19, several organizations are implementing health screening procedures for visitors and employees entering their building.

Touchless technology doesn’t only provide protection and safety to the workplaces. It also provides the seamless modern experience to the workplace. The paper-based manual system is not safe enough and also slowed down the productivity of the business. That’s why we have thought through how to make the visitor check-in experience seamless and touch-free.

A.   With a Touchless visitor management system, visitors can pre-register on their smartphone before their arrival; visitor screening; check-in with a QR code; can meet their host in no time; and record the last details of the visitor experience.

B.   Going Touchless is a way to help your visitors, and your workplace, stay healthy. By going Touchless, you’re able to reduce the spread of viruses.

C.   The Touchless visitor management system saves your visitors time once they arrive so they’re not bothered to check-in and can more quickly get to who they’re there to see.

D.   When Visitors arrive, you can collect essential information about your guest and take care of any additional actions before the visit.

E.   Touchless Visitor management System isn’t only about hygiene and safety. It’s also a way to show that your business is forward-thinking and modern.

Kiosk

Companies have to now restart the Touchless visitor management system after lockdown is over. To help maintain the spread of COVID-19, several organizations are implementing health screening procedures for visitors and employees entering their building. Touchless self-check kiosk automatically measures body temperature in seconds. It is an invaluable solution for quick detection of illnesses and reduce the spread of bacteria & viruses, it vets staff members and the public before entry to premises such as Schools, Malls, Restaurants, factories, Railway stations, Airports, and Corporate offices.

The kiosk features a touch-less UV-C Box to disinfect the bag, cell phone, and keys in less than 10 seconds. UV-C Box kills 99% Viruses and Bacteria within 10 seconds on exposed surface.

Preparing before anyone even arrives onsite

There’s a lot you can do before your employees and guests arrive to make the experience frictionless. Start by pre-registering anyone coming into your office. This way you can gather important information to make sure they’re safe to enter and give them what they need to feel comfortable in your workplace.

Start with pre-screening them and approving their entry to make sure only the right people come on-site each day. This gives your team important control levers, like inviting healthy employees into the office in shifts.

Create a touchless sign-in experience.

A.   Post clear signage at the front desk so people know what to do when they arrive

B.   Allow people to check-in using their personal device rather than an iPad Kiosk

C.   Put a bottle of hand sanitizer next to your kiosk if you do need to use it

D.   Update your settings so guests don’t have to tap to take their photo when they arrive

E.   Create a welcome guide and customize it by employee or visitor type to make sure everyone has the information they need

F.    Make your badge printer easily accessible to guests 

G.   Update your hospitality practices. Instead of having a receptionist hand a guest a drink, make personal beverages available to grab without hand-to-hand contact

H.   Set up your final screen to give instructions to guests about what to do next, like where to go or where to wait for their host

I.    Opt for a sign-in system that notifies your employees automatically when their visitors arrive