Showing posts with label NBC 2016. Show all posts
Showing posts with label NBC 2016. Show all posts

Saturday, June 18, 2022

Entrance Gate safety

Entrance Gate safety 

One of the best-known brands in the realm of electrical and electronic equipment isn’t a manufacturer, a distributor or a dealer. It’s UL – formerly known as Underwriters Laboratories, recognized by users across the globe by the small symbol which appears on many of the devices you own today, such as toasters and children’s toys. UL is a certification organization that verifies the safety of the products it tests.

For users, the UL symbol communicates trust. When a product has been UL-certified and listed as such, it means that it has been thoroughly tested by 3rd-party engineers to verify that it meets relevant standards and has been deemed safe for use in its intended conditions. With this assurance, users have confirmation that the product is safe to use and it will perform properly -- they can trust in its quality.

Why is a Listing Important for Entrance Gate?

There are good reasons to make sure that every electrical or electronic product used within a facility is UL-listed. That said, when you are purchasing a security product, there is a standard of responsibility that is even higher than that for other electronics. There are negative consequences for any non-functioning element in a building; however, a non-functioning security product introduces the potential for a greater level of risk.

Nowhere is this more true than for security doors and turnstiles. Installed at the perimeter of a facility and at any entry points which need to have controlled access, security entrances permit only authorized individuals to enter. With available technology such as anti-piggybacking, anti-tailgating, touchless entry and, facial recognition to verify the identity of the credential-holder, these high-tech doors are a vital piece of an organization’s security planning and risk mitigation strategy.

For anyone directly or indirectly responsible for security within an organization, it is important to ensure that all of your security doors and turnstiles are UL-listed. UL is one of a limited number of nationally-recognized testing laboratories (NRTL), a designation given to those labs allowed by the Occupational Safety and Health Administration (OSHA) to perform certification of products to ensure they meet general industry, construction, and electrical standards.

What is the UL 325 Standard

The UL 325 standard allows all applicable products to be tested at a nationally recognized testing laboratory. The new standard also:

1.   Contains the basic qualifying factors with which products must comply in order to be documented (listed) and marked (labeled) under the requirements of the UL 325 voluntary listing and labeling program.

2.   Pertains to methods for testing products for safety.

3.   Cover installation of products under the requirements of the National Electrical Code & NBC 2016.

4.   Address fire and electrical safety, as well as safety of the public.

The heart of the UL 325 provisons for gate operators and entrapment protection is section 32 and tables 32.1 and 32.2. These parts of the UL 325 standard outline the options for different means of protecting against entrapment and state the minimum quantities of entrapment protection sensors for each type of gate operator.

Section 32.1.1 states: "A vehicular gate operator or vehicular barrier (arm) operator shall:

a. Have provisions for or be supplied with, a minimum of two independent entrapment protection means as specified in Table 32.1 for each entrapment zone.

b. Operate only after installation and enabling of the minimum number of acceptable entrapment protection means, as specified in Table 32.2…"

Gate Definition and Classifications

UL 325 defines a gate as “a moving barrier such as a swinging, sliding, raising, lowering, rolling, or the like, barrier that is a stand-alone passage barrier or is that portion of a wall or fence system that controls entrance and/or egress by persons or vehicles and completes the perimeter of a defined area.” The main types of gate operators/systems addressed in UL 325 are barrier, vertical pivot gate, horizontal slide gate, swing gate, and vertical lift gate. It is important to note that all gate operators included in UL 325 are defined to be used with vehicular gates and NOT PEDESTRIAN GATES. Property owners must provide a separate entrance for pedestrian access because pedestrian gates provide a safe way for pedestrians to enter or exit a property and help to keep people away from vehicles and automatic vehicular gate systems.

Four distinct types of classifications have been established:

Class I - Residential Vehicular Gate Operator
A vehicular gate operator (or system) intended for use in a home of one to four single family dwellings, or garage or parking area associated therewith.

Class II - Commercial/General Access Vehicular Gate Operator
A vehicular gate operator (or system) intended for use in a commercial location or building such as a multi-family housing unit (five or more single family units, hotel, garages, retail store or other building servicing the general public.

Class III - Industrial /Limited Access Vehicular Gate Operator
A vehicular gate operator (or system) intended for use in an industrial location or building such as a factory or loading dock area or other locations not intended to service the general public.

Class IV - Restricted Access Vehicular Gate Operator
A vehicular gate operator (or system) intended for use in a guarded industrial location or building such as an airport security area or other restricted access location not servicing the general public, in which unauthorized access is prevented via supervisions by security personnel.

Installation Effects

The UL 325 gate operator provisions have an effect on gate and fence dealers:

1. Gate and fence dealers should look for an indication of the class of each operator, which will be specified by the gate operator manufacturer.

2. Fence dealer sales personnel must match the site application with the class of operator. The gate operator manufacturer should be contacted if there is any question about the site application.

3. Ensure that all potential entrapment zones are protected as required in Tables 32.1 and 32.2, which must be described in the instruction manual for the gate operator. For most automatic gates, external entrapment protection sensors will be required. The expertise of dealers is required to apply the provisions of the standard to the wide variety of site specific conditions that are encountered in the field.

4. The gate operator manufacturer will provide extensive guidance and instructions which must be followed at all times. Any questions should be directed to the gate operator manufacturer.

5. A minimum of two (2) warning signs must be displayed in the area of the gate. UL 325 includes specific requirements on the format, content, and placement of these signs. 

Factors Related to Automatic Gate Construction and Installation

• Vehicular gate operators can ONLY be used on vehicular gates and never pedestrian gates.

• A separate pedestrian gate must be provided for all sites where pedestrain access is likely.

• The design and construction of all automatic gates and the adjacent fence must conform to ASTM F2200.

• Adequate clearance should be provided between a swinging gate and adjacent structures to reduce risk of entrapment.

• A sliding gate should work smoothly with easy rolling/movement in both directions prior to the installation of the operator.

• All gate activation controls should be as far away from the gate as possible and must be at least 6 feet from the gate to reduce the opportunity for “reach-through” injury.

• Warning signs and placards must be installed and be must visible in the area of the gate opening from both sides of the gate.

• See ASTM F2200, Standard Specification for Automated Vehicular Gate Construction for information about gate construction.

Device-Specific Installation Instructions There are also specific installation requirements for each type of external entrapment protection sensor. These specific requirements emphasize the care and attention that each device must be given prior to and during installation.

All external entrapment protection sensors must be monitored, and the operator must verify the presence of every device at least once during each open and close cycle. According to the standard, "Upon monitoring, should any device not be present, or a fault condition occur that precludes the sensing of an obstruction, including an interruption of the wireless signal to the wireless device or an open or short circuit in the wiring that connects the external entrapment device to the operator and the device’s supply source, the operator shall function with constant pressure…for the direction of travel being protected, or shall only be able to be moved manually…."

There shall be no modification made in the field to bypass, interfere with, or otherwise defeat the monitoring function by adding, suppressing, or changing, either on the operator or on external entrapment protection device(s) by the connection of wires; terminals; switches; jumpers; or components supplied with the operator or with the external entrapment protection device.

For gate operators utilizing non-contact sensor devices (Type B1), instructions should be consulted for placement for each application and care should be exercised to reduce the risk of nuisance tripping. One or more of these devices must be installed in all potential entrapment zones.

For gate operators utilizing contact sensor devices (Type B2), several requirements are spelled out in UL 325. One or more contact sensors shall be located in all potential entrapment zones.

A wired contact sensor shall be located, and its wiring arranged, so that communication between the sensor and the gate operator is not subjected to mechanical damage. A wireless contact sensor shall be located where the transmission of the signals is not obstructed or impeded by building structures, natural landscaping, or similar obstructions, and shall function under the intended end use conditions.

For gate operators utilizing a continuous pressure activating device (Type D), controls must be placed so that a user has full view of the gate area when the gate is moving. A placard must be placed adjacent to the controls, and no other activation device shall be connected. If you’re not sure, which is perfect for you, SSA Integrate can help. We have Certified Access Control & Entrance Control experts that can help you determine the best solution to meet your security needs while keeping you compliant with all the relevant codes. Contact SSA Integrate today to learn more with free Consultancy.

REF:
https://www.ul.com/wp-content/uploads/2014/04/UL_Gate-Operator-11.pdf

https://usautomaticgateopeners.com/store/information/ul325.html

https://www.gatedepot.com/amfilerating/file/download/file_id/49072/


30A1.2  

A gate operator installed in accordance with the manufacturer’s instructions utilizing entrapment protection designated Type A in Table 30A.1 to comply with 30A.1.1 shall upon sensing an obstruction in any direction:

a)      Stop and initiate the reversal of the gate within a maximum of 2 seconds. The gate operator shall reverse the gate a minimum of 2 inches (50.8 mm). The gate operator shall require a renewed, intended input (via wired or wireless control or integral control, a loop sensor, a card reader, or similar device) prior to enabling any automatic actuation devices such as a timer or any other maintained input that was present when the reversing function occurred.

 

b)    Stop the gate upon sensing a second sequential obstruction. The gate operator shall require a renewed, intended input (via an integral control or a wired remote intended to be in the line of sight of the gate) prior to enabling any automatic actuation devices such as a timer or any other maintained input that was present when the reversing function occurred. An alarm shall comply with paragraph 30A.1.1A.

30A.1.4 

A gate operator utilizing entrapment protection designated Type B1 in Table 30A.1 by having provision for connection of, or providing with the operator, a non-contact sensor (photoelectric sensor or equivalent) to comply with 30A.1.1 shall, when the sensor is actuated:

a)      Stop or reverse the gate within a maximum of 2 seconds of sensing an obstruction in both the opening and closing directions.

b)      Stop the gate upon sensing a second sequential obstruction in the opposite direction while in the process of reversal as described in (a).

c)      Result in a gate at rest remaining at rest unless a Type D device is actuated, and

 

d)      Return to normal operation when the sensor is no longer actuated.

30A.1.5 

With reference to 30A.1.4, a non-contact sensor is required to function only to protect obstructions in the gate’s direction of travel.

30A.1.6 

A gate operator installed in accordance with the manufacturer’s instructions utilizing entrapment protection designated Types B1 and B2 in Table 30A.1 as the primary device to comply with 30A.1.1 by having provision for connection of such device, or providing such device with the operator, shall monitor for the presence and correct operation of the device, including the wiring to it, at least once during each open and close cycle. The operator shall function as required by 30A.1.15 in the event the device is not present or a fault condition occurs which precludes the sensing of an obstruction. A fault condition includes an open or short circuit in the wiring that connects the external entrapment protection device to the operator and the device’s supply source.

30A.1.7 

A gate operator utilizing a non-contact sensor for entrapment protection in accordance with 30A.1.1 shall be supplied with instructions in compliance with 51.8.4.

30A.1.8 

A non-contact sensor (photoelectric sensor or equivalent) supplied with, or separately supplied for, a gate operator that is intended to reduce the risk of entrapment or obstruction shall comply with the applicable requirements in All Devices, Section 32, and Photoelectric Sensors, Section 33. A separately supplied sensor shall comply with 53.3.3, 53.3.4 and 53.3.5.

a)      Stop and initiate the reversal of the gate within a maximum of 2 seconds of sensing an obstruction in any direction. The gate operator shall reverse the gate a minimum of 2 inches (50.8 mm).

b)      Stop the gate upon sensing a second sequential obstruction in the opposite direction, while in the process of reversal as described in (a).

c)      Result in a gate at rest, unless a Type D device is actuated, and

d)      After the sensor is actuated no more than 2 times during a single closing cycle, or once in a single opening cycle, require a renewed intended input (via wired or wireless control or integral control, a loop sensor, a card reader, or a similar device) prior to enabling any automatic activation devices such as a timer or any other maintained input that was present when the reversing function occurred.

30A.1.9A 

With reference to 30A.1.9, a contact sensor is only required to sense obstructions in the gate’s direction of travel.

30A.1.10 

A gate operator utilizing a contact sensor for entrapment protection to comply with 30A.1.1 shall be supplied with instructions on the placement of the sensors for each Type of application in compliance with 51.8.4.

30A.1.11 

A contact sensor (edge sensor or equivalent) supplied with, or separately supplied for, a gate operator that is intended to reduce the risk of entrapment or obstruction shall comply with the applicable requirements in All Devices, Section 32, and Edge Sensors, Section 34. A separately supplied sensor shall comply with 53.3.3, 53.3.4, and 53.3.5.

30A.1.12 

A swing-gate operator utilizing entrapment protection designated Type C in Table 30A.1 to comply with 30A.1.1 shall, upon sensing an obstruction in any direction, stop the gate and:

a)      Not result in a force after 100,000 cycles of operation under rated load of more than 10 percent higher than the initial setting to stop the gate. When adjustable, the initial setting is to be at the setting for maximum force, and

b)      Be readily accessible for inspection and repair and not readily rendered inoperative.

30A.1.14 

A gate operator utilizing entrapment protection designated Type D in Table 30A.1 by having a provision for connection of, or providing with the operator, a continuous pressure actuation device to comply with 30A.1.1 shall be constructed so that a wireless control shall not operate the gate. Also see paragraph 51.8.4 (e), 52A.1.5, and 52A.1.6.

 30A.1.15 

A gate operator installed in accordance with the manufacturer’s instructions utilizing entrapment protection designated Type D in Table 30A.1 to comply with 30A.1.1 shall require constant pressure or actuation to initiate and continue movement of the gate in either the opening or closing direction. Upon removal of pressure, movement of the gate shall cease. Unless supplied with separate Open and Close buttons, each subsequent pressing of the control button shall reverse direction of the gate.

30A.1.16 

A gate operator utilizing entrapment protection designated Type E in Table 30A.1 by having a provision for, or providing with the operator, audio alarms to comply with 30A.1.1 shall:

a)      Initiate actuation of the alarm(s) a minimum of two seconds prior to movement of the gate, and 

 

b)      Continue actuation of the alarm(s) throughout the entire opening and closing cycle of the gate.

30A.1.17 

An audio alarm for a Type E device shall comply with 30A.1.18 and the applicable requirements in All Devices, Section 32, and Audio Alarms, Section 34A.

30A.1.18 

The audio alarm signal for a Type E device shall be generated by devices such as bells, horns, sirens, or buzzers. The signal shall have a frequency range of 700 to 2800 Hz, a cycle of the sound level pulsations of 1 to 2 per second, a sound level at least 100 dB1 foot (305 mm) in front of the device, and not vary more than ±8 dB over the voltage range of operation. When the audio alarm is not supplied with the operator, instructions specifying the signal criteria shall be supplied with the operator.

30A.1.19 

A Class I or Class II horizontal slide-gate or vertical lift-gate operator (or system) shall not result in a gate movement of greater than one foot per second with the operator exerting a pull force of 74 pounds (333.6N) and when connected to a supply circuit of maximum rated voltage and rated frequency. 

30A.1.20 

A vehicular gate operator shall have a means for manual operation so that the gate is capable of being moved independently of the operator. For a Class I, II, or III vehicular gate operator, the means for operation shall be supplied as an integral part of the operator and the operator shall be marked with instructions for manual operation. For a Class IV vehicular gate operator, the use of a nearby keyed release or a remotely located non-keyed release to release the operator from the gate meets the intent of this requirement.


Monday, February 14, 2022

Codes Apply for Electromagnetic Locks

Codes Apply for Electromagnetic Locks

An electromagnetic lock (EM Lock) is essentially an electromagnet in a housing mounted on the door frame, and a steel armature mounted on the door wing. When the magnet is energized, it bonds to the armature and locks the door. To allow access or egress, a switch must be provided to de-energize the electromagnet. It can be difficult to determine which set of code requirements to follow. However, code compliance is crucial when this product is used in an access- or egress-control system. Unlike most locks, electromagnetic locks typically require external release devices such as motion sensors or request-to-exit switches to allow building occupants to exit. In addition, secondary means of releasing the mag-lock are often mandated by the codes, and the requirements vary depending on the type of locking system used.

Prior to the 2009 edition of the International Building Code (IBC), the set of code requirements typically used for doors equipped with electromagnetic locks was the section called Access-Controlled Egress Doors. The 2009 edition added a second set of requirements that could be used, called Electromagnetically Locked Egress Doors. Either of these two sets of requirements can now be used, depending on the application.

The basic difference between these two sections is that the original section, Access-Controlled Egress Doors, required a sensor and push button as release devices, while the new section, Electromagnetically Locked Egress Doors, allows a door-mounted release device instead. This could be panic hardware or a latchset with a request-to-exit (RX) switch, or a bar with an electronic touch sensor.

A building could have several AHJs (Authorities Having Jurisdiction), and more than one code may be enforced for a particular project. The most commonly used model codes in the U.S. are the International Building Code (IBC), the International Fire Code (IFC), and NFPA 101 – The Life Safety Code, but state and local codes sometimes include modifications that affect the use of electrified hardware. It’s usually best to follow the most stringent set of requirements that have been adopted in the project’s jurisdiction.

Here is a summary of the requirements for both sections from the 2009 IBC:

1008.1.4.4 Access-Controlled Egress Doors

·        Applies to entrance doors in a means of egress and entrance doors to tenant spaces.

·        Allowed in Use Groups - A (Assembly), B (Business), E (Educational), I-2 (Institutional - Hospitals & Nursing Homes), M (Mercantile), R-1 (Residential - Hotels, Motels, & Boarding Houses), and R-2 (Residential - Apartments & Dormitories).

·        A sensor must be mounted on the egress side to detect an occupant approaching the doors. Doors must unlock upon a signal from the sensor or loss of power to the sensor.

·        Loss of power to the lock must unlock the doors.

·        A manual unlocking device (push button) shall result in direct interruption of power to the lock – independent of the access control system electronics. When the push button is actuated, the doors must remain unlocked for 30 seconds minimum. The push button must include signage stating “Push to Exit” and must be located 40” to 48” vertically above the floor and within 5’ of the doors. Ready access must be provided to the push button.

·        If the building has a fire alarm/sprinkler system/fire detection system, activation of the system must automatically unlock the doors. Doors must remain unlocked until the system has been reset.

·        Entrance doors in buildings with an occupancy in Group A, B, E or M shall not be secured from the egress side during periods that the building is open to the general public.

1008.1.9.8 Electromagnetically Locked Egress Doors

·         Applies to doors in a means of egress and doors to tenant spaces. The 2009 IBC includes a limitation to doors “not otherwise required to have panic hardware,” which was removed in the 2012 edition.

·        Allowed in Use Groups - A (Assembly), B (Business), E (Educational), M (Mercantile), R-1 (Residential - Hotels, Motels, & Boarding Houses), and R-2 (Residential - Apartments & Dormitories).

·          The door must be equipped with listed hardware mounted on the door leaf, which incorporates a built-in switch to directly release the electromagnetic lock and unlock the door immediately.

·         The release device must have an obvious method of operation, and must be readily operated with one hand under all lighting conditions.

·            Loss of power to the listed hardware must automatically unlock the door.

·          When the new section was added to the 2009 IBC, the technical committee made a change to the proposed language which caused some confusion. A limitation to doors that are “not otherwise required to have panic hardware” was included in the 2009 edition, but it appears that this was not the intent. The limitation was removed and the intent clarified in the 2012 edition of the IBC, and as long as the switch in the panic bar releases the mag-lock, a door required to have panic hardware can be equipped with a mag-lock.

·        With the addition of Section 1008.1.9.8 – Electromagnetically Locked Egress Doors, the door-mounted release device can be used instead of the sensor and emergency push button. Note that this section does not require the mag-lock to release upon activation of the fire alarm or sprinkler system when a door-mounted release device is used. But there are a few issues that are still unclear, even with the 2012 changes.

·           The door must unlock upon loss of power to the “listed hardware,” which in this case is the door-mounted release device. Loss of power to some types of request-to-exit switches will not unlock the mag-lock. We may see a future change to the language so that loss of power to the electromagnetic lock is required to unlock the door, but the code currently addresses the release device.

·        I-2 occupancies (Institutional – Hospitals & Nursing Homes) are not included as acceptable locations for electromagnetically locked egress doors. This use group was added to the Access-Controlled Egress Doors section in the 2009 edition of the IBC, so hopefully the new section will catch up and include the I-2 use group in the future.

·        UL 305, the UL Standard for Panic Hardware, doesn’t address the use of panic hardware to release an electromagnetic lock. There is also a section of the IBC which states that certain doors shall not be equipped with a latch or lock unless it’s panic hardware. This should be changed to reflect the use of a mag-lock released by panic hardware.

The following summaries address each type of system where a mag-lock might be used, and the related model code requirements:

Sensor Release: A sensor automatically unlocks the electromagnetic lock to allow egress.

This is the most common type of system where electromagnetic locks are used. In past editions of the model codes, the applicable section referred to “access-controlled egress doors” which often gave the impression that the requirements applied to all doors with an access control system. A typical access control system which controls access but utilizes a lever handle or panic hardware to allow free egress is not required to comply with this section. The intent is for this section to apply only to electrified locks that are released by a sensor, and the title of this section has been changed in the model codes to clarify the intent.

For these systems, a sensor on the egress side of the door opening must detect an approaching occupant and unlock the door. The door must also unlock upon loss of power to the sensor or locking system, upon activation of the building fire alarm or automatic sprinkler system (until manually reset), and upon actuation of an auxiliary switch – typically a push button. This switch must be located 40-48 inches above the floor and within 5 feet of the door, must be readily accessible, and must be marked “PUSH TO EXIT.” Pushing the button must directly interrupt power to the lock, independent of the other electronics, and the door must remain unlocked for at least 30 seconds.

Recent editions of the IBC/IFC and NFPA 101 include virtually identical egress requirements for these systems, and all of these model codes currently require the UL 294 listing for these applications. It’s important to note that when this type of system is installed on a door that is required by code to have panic hardware, the panic hardware is required in addition to the electromagnetic lock.

Door-Hardware Release: A switch in the door-mounted hardware releases the electromagnetic lock to allow egress.

This type of system typically utilizes a request-to-exit (RX or REX) switch in the lever handle, panic hardware, or sensor bar mounted on the door. Again, the requirements of the IBC/IFC and NFPA 101 are very similar. The model codes require the hardware mounted on the door to have an obvious method of operation, and to be readily operable with one hand and under all lighting conditions. Operation of this door-mounted hardware must directly interrupt power to the electromagnetic lock, and the door must unlock immediately. The door must also unlock upon loss of power to the locking system, and the UL 294 listing is required by the current model codes. Note that this section does not require an auxiliary push button beside the door, or for the door to unlock upon activation of the fire protection system, although some local codes or AHJs may mandate these additional safety overrides.

Delayed Egress: Doors are locked to delay egress for 15 seconds under normal operation but allow immediate egress during an emergency.

There are two types of egress:

·        Free means that someone can exit an egress door without any delay by using only a single motion, such as turning a lever or pushing on a panic bar.

·        Delayed means that there’s a timed delay before someone can pass through the egress door and exit. Typically, this delay is 15 seconds.

Delayed egress is used to:

·        Discourage casual use of certain doors, so pedestrians can’t leave a premises or steal merchandise.

·        Deter elopement of patients, children or inmates from a protected area of a facility.

·        Make possible access control in both directions through selected openings.

Often, delayed egress systems include panic hardware with delayed egress circuitry, but electromagnetic locks are also available with this function. The lock includes an integral timer which allows the door to be opened 15 seconds after an attempt to exit is made – or 30 seconds when approved by the AHJ. The activation switch may be part of the mag-lock, or the timer may be initiated by an external RX switch.

To ensure free egress in an emergency, delayed egress locks must unlock immediately (no 15-second delay) upon activation of the fire protection system or sprinkler system, and upon loss of power. The capability of allowing immediate egress by a switch at the fire command center or other location may also be required.

Under normal operation, the delayed egress lock prevents egress until a force of 15 pounds, maximum, is applied for not more than 3 seconds; an audible alarm will sound in the vicinity of the door, and in 15 seconds the door will unlock to allow egress. After the device has been released by an attempt to exit, it must be rearmed manually - current codes do not allow delayed egress locks to rearm automatically.

Doors with delayed egress locks must also include signage stating, “PUSH UNTIL ALARM SOUNDS. DOOR CAN BE OPENED IN 15 SECONDS.” When a delayed egress lock is installed on an inswinging door, or when an AHJ approves a 30-second time delay, the signage must reflect the applicable operation. Specific requirements for the signage can be found in the model codes, and current codes also require the UL 294 listing for delayed egress locking systems.

The model codes include some additional limitations based on the use group or occupancy classification. For example, past editions of the IBC/IFC prohibited the use of delayed egress locks in assembly, educational, and high hazard occupancies, but the 2018 editions include exceptions for doors serving classrooms with an occupant load of less than 50 people, and for secondary exits from courtrooms. Delayed egress locks are allowed in those locations when the jurisdiction has adopted the 2018 edition of the model code, or when approve by the AHJ.

Controlled Egress: In health care facilities where patients require containment for their safety or security, doors may be locked in the direction of egress under normal operation but must allow emergency egress.

The IBC and IFC allow this application to be used in some health care units in hospitals, nursing homes, and other Group I-1 and I-2 facilities. These units might include memory care, maternity, pediatrics, or other areas approved by the AHJ. NFPA 101 includes these requirements in the chapters that cover new and existing health care facilities, and the code allows the doors to be locked where patients’ special needs require specialized protective measures for their safety or security.

According to the IBC and IFC, the building must have an automatic sprinkler system or automatic fire detection system, and activation of these systems must unlock the doors to allow egress. Loss of power must also automatically unlock the controlled egress doors, as well as a switch that directly breaks power to the lock - located at the fire command center, nurses station, or other approved location. A building occupant must not be required to pass through more than one door equipped with a controlled egress lock before entering an exit. The automatic-release requirements listed here do not apply to areas used for psychiatric treatment, or hospital units where listed infant abduction systems are installed.

All clinical staff members must have the ability – including keys or credentials – to unlock the doors for emergency egress, and these procedures must be included in the facility’s emergency plan. Training and drills are crucial in order for staff to be familiar with the egress protocols. Systems used for controlled egress must be listed to UL 294, and emergency lighting must be present at doors equipped with these locks. The requirements of NFPA 101 would not change the type of locks used in these systems (fail safe electrified locks), but the Life Safety Code does include slight variations to the required safety systems and procedures.

Stairwell Reentry: Stairway access doors may be locked on the stair side but must unlock to allow building occupants to leave the stairwell if it becomes compromised during a fire.

The IBC and IFC require all stairwell doors that are lockable on the stair side to have electrified locks that can be remotely released by a switch at the fire command center, or other approved location. (Note: Stair discharge doors may be locked to prevent access to the stairwell but must allow free egress.) For high-rise buildings, the IBC and IFC require the stairwell to be equipped with a two-way communication system if doors are electrically locked. Consult the IBC/IFC for exceptions related to buildings with a single exit stair.

The NFPA 101 requirements for stairwell reentry differ from the IBC and IFC, so it’s very important to refer to the adopted code to verify what is required. For example, NFPA 101 allows doors to be mechanically locked on the stair side when serving four stories or less – the IBC and IFC require these doors to be electrically locked, or never locked. NFPA 101 also exempts some occupancies from the reentry requirements, and includes a section detailing the criteria for “selected reentry” – which allows some doors to be mechanically locked and others to allow reentry.

If mag-locks are used on fire-rated stair doors, the door must be equipped with additional latching hardware to maintain the fire rating. In addition, the mag-locks must meet the applicable requirements on the egress side – sensor release, door hardware release, delayed egress, or controlled egress. Fail-safe electrified locks or fail-safe trim for fire exit hardware is commonly used; fail safe electric strikes are not listed for use on fire door assemblies.

Elevator Lobby Egress: Doors secure the elevator lobby and prevent access to the tenant space but must allow emergency egress from the lobby.

Currently, the IBC and IFC require each elevator lobby to have code-compliant egress via at least one exit. This could include direct access from the lobby to an exit stairwell, or free egress from the lobby to a corridor that leads through a tenant space to an exit. This means of egress must not be restricted, except with a delayed egress lock (most occupancy types) or an exit alarm.

NFPA 101 does allow egress through elevator lobby doors to be restricted during normal operation, if the doors allow emergency egress. The application must be allowed by the applicable occupancy chapter. For example, Chapter 11 (Special Structures and High-Rise Buildings) allows elevator lobby exit access doors to be locked “in other than newly constructed high-rise buildings.” Therefore, this application would not be allowed by NFPA 101 in new high-rise buildings.

The building must have a fire alarm and sprinkler system, and the lobby must have a smoke detection system. Activation of any of these systems (except by manual pull stations), or loss of power must automatically unlock the doors to allow egress. The doors must remain unlocked until the system is manually reset.

The elevator lobby must have a two-way communication system connected to a central control point that is constantly staffed by people who can provide emergency assistance. The electrified hardware must be listed to UL 294, and any latch-releasing hardware on the door must comply with the egress requirements of NFPA 101.

Because the IBC and IFC do not include a section similar to NFPA 101 regarding elevator lobby doors, some cities and states have modified the IBC/IFC to allow these doors to be electrically locked. These modifications typically require fail safe locks which unlock automatically upon activation of the fire protection system, as well as communication between the elevator lobby and a security desk or other location.

Security Interlock: Two or more doors are interlocked so that when one door is opened, the other door cannot be opened; commonly used on clean rooms and high-security applications.

Mag-locks are often used in security interlocks, but this application is not currently addressed in the model codes except when related to a prison sallyport. This type of system could impede egress, so each application must be approved by the AHJ, and additional safety features may be required. For example, to avoid entrapment in the room or vestibule, the AHJ may require emergency override switches in both locations, as well as an override switch on the exterior that is controlled by a key or credential. These switches will allow the doors to be unlocked for access or egress if one door is in the open position, preventing the use of the other door. In most security interlocks, the locks are automatically unlocked upon activation of the fire protection system, to allow free egress. Consult the AHJ to determine what is required.

In most cases, only one of these sections will apply to a particular door opening equipped with a mag-lock. The exception would be a stairwell door that must meet the stairwell reentry requirements on the stair side but would have one of the other applications on the egress side. Remember, refer to the applicable model codes and any state or city modifications to determine whether additional limitations apply, and consult the AHJ if more information is needed.

Code Comparisons - Occupancy Classifications

I-Codes. Until the 2018 edition of the IBC, delayed-egress locks were allowed in all use groups except A – assembly, E – educational and H – high hazard. Beginning with the 2018 edition, delayed-egress locks are allowed on the secondary exits that serve courtrooms (typically assembly occupancies) if the building has a sprinkler system. The 2018 edition also allows delayed-egress locks on classroom doors in educational occupancies if the calculated occupant load served by the door is fewer than 50 people. This gives schools an option if they’re looking for a way to prevent elopement of young children or students who have special needs.

NFPA. The NFPA codes are less restrictive and allow delayed-egress locks in areas of low and ordinary hazard contents, although the Life Safety Code includes restrictions depending on the occupancy. For example, delayed-egress locks aren’t permitted on the main entrance or exit doors that serve assembly occupancies, and they also are prohibited on airport jetway doors. Lodging or rooming houses can have only one door that has a delayed-egress lock per escape path, and residential board and care facilities are permitted to have delayed-egress locks only on exterior doors. The other occupancy classifications aren’t subject to similar limitations.

Code Comparisons - Required Fire Protection System

I-Codes & NFPA. Both sets of model codes require buildings that have delayed-egress locks to be equipped throughout with an automatic sprinkler system or approved automatic smoke- or heat-detection system. This requirement allows either type of system, although the change to the 2018 IBC that applies to courtrooms specifically requires a sprinkler system.

Code Comparisons - Activation Time

I-Codes & NFPA. Both sets of model codes require the delayed-egress timer to begin when a force of 15 pounds is applied for no more than 3 seconds. Prior to the 2015 edition of the IBC, the timer was required to begin after someone attempted to exit for 1 second. The activation time required to initiate the 15-second (or 30 second) timer is permitted to be less than 3 seconds, but it can’t be more than 3 seconds.

Code Comparisons - Automatic Release Delay

I-Codes & NFPA. When the timer is activated, the model codes require the delayed-egress lock to release in the direction of egress after 15 seconds; the AHJ might approve a time delay of 30 seconds. After that period, the door will be unlocked in the direction of egress, and another attempt to exit will allow the door to be opened.

Code Comparisons - Rearming After Activation

I-Codes & NFPA. When the timer of a delayed-egress lock is activated and the lock allows egress after 15 (or 30) seconds, the model codes require the lock to be rearmed manually.

Code Comparisons - Audible Alarm

I-Codes & NFPA. Both sets of model codes require an audible alarm to sound when a delayed-egress lock is activated, but the codes don’t mandate a specific type of alarm. Some products incorporate a continuous alarm, while others have an intermittent sound or even a verbal countdown.

Code Comparisons - Signage Requirements

I-Codes. Signage must state "PUSH [PULL] UNTIL ALARM SOUNDS. DOOR CAN BE OPENED IN 15 [30] SECONDS.” These signs are required for doors equipped with delayed-egress locks (see exception for Group I) and must be mounted above and within 12 inches of the door exit hardware. Beginning with the 2015 edition, signage is required to comply with the visual character requirements of ICC A117.1 – Accessible and Usable Buildings and Facilities. In Group I – institutional occupancies, the AHJ may allow signage to be omitted for certain types of treatment areas.

NFPA. The required text for the signage is the same as that required by the I-Codes: “PUSH [PULL] UNTIL ALARM SOUNDS. DOOR CAN BE OPENED IN 15 [30] SECONDS.” The NFPA codes require signage for delayed-egress locks to be readily visible, with letters not less than 1 inch high, a stroke width of one-eighths of an inch and a contrasting background, durable and located on the egress side of the door adjacent to the release device.

Code Comparisons - Action Upon Alarm Activation

I-Codes. When the fire alarm or sprinkler system is activated, delayed-egress locks must allow immediate egress automatically. This ensures that building occupants can exit quickly during a fire.

NFPA. The NFPA codes are more specific regarding the types of system activation that must unlock the delayed-egress locks for emergency egress. These doors must unlock with no delay in the direction of egress upon the activation of a sprinkler system, not more than one heat detector or not more than two smoke detectors.

Code Comparisons - Remote Release

I-Codes. To allow immediate egress when necessary, the I-Codes require delayed-egress locks to be capable of being deactivated by a switch at the fire command center or other approved locations.

NFPA. Remote release isn’t mandated by the section of the Life Safety Code that addresses delayed-egress locks.

Code Comparisons - Action Upon Power Failure

I-Codes & NFPA. When power fails, both sets of codes require delayed-egress locks to unlock immediately in the direction of egress. A common question about delayed-egress locking systems is whether battery backup is allowed in the power supply of the electrified hardware. The model codes don’t address this specifically, so it often is left up to the AHJ to decide whether delayed-egress locks must release upon loss of the main power to the building or continue to delay egress on standby power. However, based on the requirements of NFPA 72 – National Fire Alarm & Signaling Code, I don’t recommend using independent battery backup in the power supply of the delayed-egress lock. If the fire-alarm system and delayed-egress locks are powered by two different standby power systems, the hardware might not interface properly with the fire alarm after the loss of main building power. Using the same standby power source for the fire-alarm system and delayed-egress locks is preferred.

Code Comparisons - Emergency Lighting

I-Codes & NFPA. Emergency lighting is required by both sets of model codes, on the egress side of the door on which a delayed-egress lock has been installed. It’s important to check for the presence of emergency lighting before you install delayed-egress hardware.

Code Comparisons - Quantity of Locks per Egress Path

I-Codes. For most use groups, only one delayed-egress lock is allowed per egress path. This has changed from past editions of the I-Codes, where a building occupant could encounter only one delayed-egress lock before going through an exit. In Group I – institutional occupancies, such as hospitals, nursing homes and day care facilities, the I-Codes allow two doors that have delayed-egress locks per egress path, with a maximum combined delay of 30 seconds. In Group I-1, Condition 1 and Group I-4, the exception permitting two doors that have delayed-egress locks mandates that the building is equipped with a sprinkler system throughout.

NFPA. For most occupancy classifications, the NFPA codes don’t restrict the number of delayed-egress locks per egress path. Only in lodging or rooming houses does the Life Safety Code limit delayed-egress locks to one device per escape path.

Required Listings

I-Codes & NFPA. Both sets of model codes require delayed-egress locking systems to be listed to UL 294 – Standard for Access Control System Units. If a delayed-egress lock will be installed on a fire-door assembly, it also must be listed to UL 10C – Positive Pressure Fire Tests of Door Assemblies or NFPA 252 – Standard Methods of Fire Tests of Door Assemblies. In addition to the other listings, panic hardware that has delayed egress as a feature must be listed to UL 305 – Standard for Panic Hardware (I-Codes & NFPA) and in some cases BHMA A156.3 – Exit Devices (NFPA only).

If you are a system integrator or access automation installer or even a distributor, it is important to know how to select the best code application for access system on behalf of the customer. Majority of the datasheets and catalogues are not really useful unless you already know what you are getting into. If need any further information contact us on ssaintegrate@gmail.com.

Further Reading

For more on codes and delayed-egress locks:

IBC sections for Delayed Egress:

·        2021 – 1010.2.13

·        2018 – 1010.1.9.8

·        2015 – 1010.1.9.7

·        2012 – 1008.1.9.7

·        2009 – 1008.1.9.7

NFPA 101 sections for Delayed Egress Electrical Locking systems:

7.2.1.6.1