Showing posts with label LAN. Show all posts
Showing posts with label LAN. Show all posts

Tuesday, February 1, 2022

Difference between Hub and Switch

Difference between Hub and Switch 

Network devices, or networking hardware, are physical devices that are required for communication and interaction between hardware on a TCP/IP network.

Here is the common network device list:

·        Hub

·        Switch

·        Router

·        Bridge

·        Gateway

·        Modem

·        Repeater

·        Access Point

In 2006 The Network Hub is invented at Vancouver, British Columbia, Canada. A hub is a device that connects multiple Ethernet devices on one network and makes them act together as a single network. A hub does not gather information and input in one port results as an output in all ports on the network. A switch is a networking device that performs the same job as the hub but are considered as a more intelligent hub as it gathers information about the data packets it receives and forwards it to only the network that it was intended for. A Hub is a layer-1 device and operates only in the physical network of the OSI Model.

Hubs and switches are devices that are used in data networking on the internet. These devices are used in order to connect two or more networking ports in order to transfer data along the connection. Though the primary job of hubs and switches are the same, to forward data to different networks, they work in different ways.

A hub, also known as Ethernet hub, active hub, network hub, repeater hub or multiport repeater, is a device that connects multiple Ethernet devices on one network and makes them act together as a single network. A hub has multiple input/output (I/O) ports, in which an input in one port results in it being an output in all the other ports, except the port where it was input. In layman’s terms, a hub connects many networks into one, where a data packet that is sent by one networks, is copied and pasted to all network ports, making it so that every port can see that data packet. A hub works on the physical layer or layer 1 of the Open Systems Interconnection (OSI) model. It also works as a data collision detector, sending a jamming signal to all ports if it detects collisions at one port.

It is a simple device that does not examine the data it receives or sends, while just duplicating the data and making it visible for all. The receiving port that has to decide if the data packet is actually intended for it by checking the address on the packet, before passing it on further. Since hubs only have one collision domain, constant collisions occur. Unnecessary traffic is sent to all devices on the network. Originally hubs were popular due to the high price of switches, but switches are not so expensive these days. Hubs are slowly becoming obsolete in many practices, but are still used in special circumstances.

A switch is a networking device that performs the same job as the hub; it connects network segments or devices making them act as a single network. Switches are commonly referred to as a multi-port network bridge that process and routes data on a data link layer or layer of the OSI model. Switches can also process data at the network layer (layer 3) or higher layers and are known as multilayer switches.

Switches are considered as a more intelligent hub as it gathers information about the data packets it receives and forwards it to only the network that it was intended for. When a switch receives a data packet, it examines the data address, the sender and the receiver and stores the memory, after which it then sends the data to the device that the data is meant for.

Most modern Ethernet Local Area Networks (LANs) operate on switches. Small offices and residential devices commonly use single layer switch, while bigger applications require multilayer switches. The switches use a bridge or a router in order to split a larger collision domain to smaller collision domains, resulting in lesser collisions.  Each port has an individual collision domain, allowing computers to maintain dedicated bandwidth.

Hub

Switch

Definition

A hub is a connection point for different segments of a LAN. It contains multiple ports and when it receives a packet of information at one port, it copies this packet to all segments of the LAN so that it can be viewed by all ports.

A switch is multi-port networking device that connects network devices together. A switch operates at the data link layer (layer 2) of the OSI model. A switch filters and then forwards data packets between networks.

Layer

Physical Layer (Layer 1)

Data Link Layer (Layer 2)

Spanning-Tree

No Spanning-Tree

It allows many Spanning-Trees to take place.

Type of Transmission

Broadcast

Broadcast, Uni-cast & Multicast.

Table

No MAC table. Hubs cannot learn MAC address.

Stores MAC address and maintains address.

Used in

LAN (Local Area Networks)

LAN (Local Area Networks)

No of Ports

4

24-48 depending on type of switch.

Collision

Occurs

No collision occurs

Collision Domain

One collision domain

Every port has its own collision domain.

Transmission Mode

Half duplex

Full duplex

Types of Hub

There are three types of the hub that are given below:

1.  Passive Hub

2.  Active Hub

3.  Intelligent Hub

Passive Hub: The passive hubs are the connection point for wires that helps to make the physical network. It is capable of determining the bugs and faulty hardware. Simply, it accepts the packet over a port and circulates it to all ports. It includes connectors (10base-2 port and RJ-45) that can be applied as a standard in your network. This connector is connected to all local area network (LAN) devices. Additionally, the advanced passive hubs have AUI ports, which are connected as the transceiver according to the network design.

Active Hub: As compared to a passive hub, it includes some additional features. It is able to monitor the data sent to the connected devices. It plays an important role between the connected devices with the help of store technology, where it checks the data to be sent and decides which packet to send first.

It has the ability to fix the damaged packets when packets are sending, and also able to hold the direction of the rest of the packets and distribute them. If a port receives a weak signal, but still it is readable, then the active hub reconstructs the weak signal into a stronger signal before its sending to other ports. It can boost the signal if any connecting device is not working in the network. Therefore, it helps to make the continuity of services in LAN.

Intelligent Hub: It is a little smarter than passive and active hubs. These hubs have some kinds of management software that help to analyze the problem in the network and resolve them. It is beneficial to expend the business in networking; the management can assign users that help to work more quickly and share a common pool efficiently by using intelligent hubs. However, it offers better performance for the local area network. Furthermore, with any physical device, if any problem is detected, it is able to detect this problem easily.

The important applications of a hub are given below:

·        Hub is used to create small home networks.

·        It is used for network monitoring.

·        They are also used in organizations to provide connectivity.

·        It can be used to create a device that is available thought out of the network.

Advantages of Hub

1. It provides support for different types of Network Media.

2.  It can be used by anyone as it is very cheap.

3.  It can easily connect many different media types.

4.  The use of a hub does not impact on the network performance.

5.  Additionally, it can expand the total distance of the network.

Disadvantages of Hub

1. It has no ability to choose the best path of the network.

2.  It does not include mechanisms such as collision detection.

3.  It does not operate in full-duplex mode and cannot be divided into the Segment.

4.  It cannot reduce the network traffic as it has no mechanism.

5.  It is not able to filter the information as it transmits packets to all the connected segments.

6.  Furthermore, it is not capable of connecting various network architectures like a ring, token, and ethernet, and more.


Friday, September 18, 2015

Point To Point Communication for IP Camera

Point To Point with Nano Tp-LocoM5

Many Installers are requesting methods to connect their Security Systems. From running cable race ways in commercial buildings to installing conduit above or below ground in residential installations, running wired connections can take a lot of time – which equals more money to spend in labor. This article can serve as a guide on how to maximize the use of our Nano Station Loco M5. In this article we will be going to be utilizing an IP Megapixel system.

Example: IP camera System
Items Needed:-
TP-Loco M5
Any IP camera
Any NVR
Category 5, 5e or 6 Cable / Patch Cables
PoE Switch

Before installing any hardware we first need to configure the Nanos. Lets start by Configuring the Nano that will act as an Access Point. This is the one that will be located at the Main Network.
Nano (Access Point)
Navigate to http://192.168.1.20 on your web browser. If you get this page . Click on “Continue to this website (not recommended)”
This is the correct page you should see displayed on your browser. Once you are here you can log in using UBNT as Username and Password.
Select your Country and agree to the terms of use by ticking the radio button.
Once you have gained access to the Main GUI, navigate to the Wireless Tab
Match the Settings displayed.
Wireless Mode: Access point
WDS : Enabled
SSID: UBNT_Bridge
Security : WPA2-AES
Preshared KEY: UBNT2014
Hit Change but not apply.
Network Mode: Bridge
Static Ip: 192.168.1.159
Match your Gateway as well as the DNS server. In this example we left this out as many networks are different.
Finally hit apply.
Once you have applied the settings your Nano will restart and you can install the Access Point at the Main location where the Main network is.
Nano (Station)
Lets go ahead and open an internet browser.
Navigate to http://192.168.1.20
Use the following credentials to log in.
Username: UBNT Password: UBNT
Select your Country & Language
Check the radio button to Agree the terms of use as.
Once you are loge in navigate to the Network Tab
Use the Following settings
Wireless Mode: Station
WDS : Enabled
SSID: UBNT_Bridge
Security : WPA2-AES
Preshared KEY: UBNT2014
Navigate to Network
Use the Following settings
Network Mode: Bridge
Static Ip: 192.168.1.160
Match your Gateway as well as the DNS server in this example we left this out as many networks are different.
Navigate to the Ubiquity tab
Make sure to match these settings and hit apply.
Once you have completed both Nanos you can install them making sure that they both have line of sight between the devices, some minor adjustments can be done to ensure a good connection.
The Nano’s will lock onto the network by themselves or you can click on the SELECT button this will open up a tab that will display any Access Points in the area select the correct one and lock onto it.
Once you have completed setting up your Point to Point Bridge we can focus on the location.
In this illustration you can see that the Nano (Access Point) is in line of sight with the Nano (Station) that has an IP camera connected to it.
The Connections are simple

Site Side
1.        Connect the camera that you need to add into your Main network onto its own PoE Switch “POE Port”
2.        Attach the “LAN” Cable on the single port PoE switch to the “LAN” on the PoE switch from the Nano (Site)
3.        Attach the “PoE” Cable to the Nano Station “LAN” port.
Main Side
1.        Connect the Nano Station to its PoE switch  (“LAN” to “PoE”)
2. Attach an Ethernet cable from your Router LAN port to the “LAN” port located on the Nano stations PoE switch.

*NVR connections are simple simply attach your NVR to the Router  by attaching a cable in between the LAN port on the NVR to the LAN port of your router.

Mounting Options:
The Nanos come already designed to be attached to a pole, there is a supplied Nylon Zip Ties.

Troubleshooting Tips:
If you have successfully connected all of the devices and you cannot seem to ping your camera on any device on the Station side, make sure that the WDS is enabled in both the AP and Station.
If signal is poor you can use the AirView Application to check your signals. If you are not that tech savvy you can use the Signal bars behind the units or simply log in to both and tweak your nano’s position.
Once you have completed mounting your camera and Nano stations as well as configuring your Nano’s, your system should be up and running.
Also, to view your cameras outside your network, some port forwarding is needed. Ports that need to be opened are 37777,37778 and HTTP ports.

Tuesday, March 31, 2015

Configure Router as Switch

How to configure router as switch?
Most likely you will ask this question if you plan to expand you home network, and you have only extra Ethernet router but not switch. At the same time you try to make use this extra router if possible without paying more on extra switch. Well… It’s pretty simple to get it done, keep on reading.

As you can see from 2 examples below, we can use second Ethernet router to expand existing wireless network or Ethernet home network, so that you can connect more computers to your network. Please note that first and second routers must be located on same network, because the second router just acts as a switch, not router anymore.



Ok. Let’s start to configure second router as switch.

1) Connect first router’s LAN port to second router’s LAN port by using a crossover cable. If one of the routers supports auto MDI/MDI-X feature, you can use either straight or crossover cable. Remember, don’t make any connection to second router’s WAN or Internet port.
2) Ok. Now assuming your first router's LAN IP is 192.168.1.1 with subnet mask 255.255.255.0, and then this will act as gateway for entire network (including the computers that connect to second router). If you would like to enable DHCP, then just enable the DHCP setting on first router and it will act as DHCP server for entire network (you don't need to enable DHCP on second router anymore). As an example, you can enable DHCP with IP range 192.168.1.2-250, subnet mask 255.255.255.0, gateway 192.168.1.1, DNS servers 208.67.222.222 and 208.67.220.220 on first router.
3) After talking about first router's configuration, proceed to log on to second router’s configuration page, then give this router an IP by configuring an IP and subnet mask under LAN setting. The IP that you configure should be located on subnet same with first router's subnet and this IP is not being used by any other device. If you have configured first router’s LAN IP and DHCP setting as shown in step 2 above, you can easily configure second router with LAN IP 192.168.1.251, 192.168.1.252 or 192.168.1.253 and subnet mask 255.255.255.0.
4) After that, don’t enable DHCP or any other settings on second router. If you have enabled DHCP or other settings, disable them. Finally SAVE all the settings. And now your have completed your mission of making second router as switch.
5) If you have computer that is configured to obtain IP automatically, connect it to other LAN port of this new "network switch", then it should be able connect to network, ping router IP and access to internet.

Thursday, January 1, 2015

Make Your Internet Faster

How To Make Your Internet Faster (Windows XP, Vista, 7,8)
Slow internet connection is the annoying thing that many people don't want to have. If your internet download speed is slow or your internet connection took long time to load the page, so you are not viewing your Security Camera / DVR. Don't worry today we will teach you how to make your internet faster by change DNS server in the control panel. There are many tricks and tips that also can increase internet speed, but we will show you the effective one.
In here we will walk you through step by step on how to change DNS servers that can increase your internet speed to maximum. Make sure to follow the step correctly for better result.

Step 1 : Open Control Panel

Step 2 : Go to Network and Internet >>> Network and Sharing Center

Step 3 : Click on Local Area Connection >>> Select Properties

Step 4 : Find and double click on "Internet Protocal Version 4 (TCP/IPv4)"

Step 5 : Tick on "Use the following DNS server addresses"

Step 6 : Fill up the DNS server like the same down below :

Preferred DNS Server : 8.8.8.8 
Alternate DNS Server : 8.8.4.4

or

Preferred DNS Server : 208.67.222.222
Alternate DNS Server : 208.67.222.222 

Step 7 : Click OK and Restart your computer.

Cleaning Up Your Computer
No matter how fast your internet is, If there are a lot of junk files and temporary files in your system, Your internet speed and system performance will drop. Also, there are many program installed in your computer and running on the background, Those programs that running in the desktop can slow down your internet speed also.

If you have many junk files and unnecessary programs installed in your PC, you should delete them out of your system.

Scan For A Virus

Virus is a main problem that causes your fast internet to run slow. Running your system with a virus can slow down your system performance, decrease your internet speed, and cause many more problems. If there are virus in your system, make sure to scan and get rid of it. You should scan for your system once a week for better security.

Friday, December 19, 2014

Value of Video Verification

The Value of Video Verification

Alarm systems have been a part of security since the beginning. We all know that when an alarm goes off, police are called to respond, but how many of those alarms are false? To just one person or business it seems reasonable for police to respond to even the false alarms, but multiply that by hundreds and thousands of businesses in each city and imagine all the false alarms police are required to respond to each day. Unfortunately, police cannot respond to every alarm call within a fair amount of time. Staffing, policies, and priorities often conflict with these calls. With no way of knowing whether the alarm is real or fake, police have to make a best effort, which sometimes results in the real crimes remaining unsolved.
Today systems are being designed to allow video verification of alarms. This means that when an alarm is tripped a monitoring company is alerted and begins remote viewing the facility through installed CCTV security cameras. The monitoring company can then verify if a crime is occurring. Police departments respond faster to a crime in progress rather than an unknown situation. What does this mean to security customers? Well, it will require a higher monthly premium for monitoring your alarm system. With the higher price comes a quicker response rate from local police. In additional, customers with video verification systems will also have the peace of mind in knowing that even when they are unable to, there is someone watching over their property.
Many cities require fees to be paid for false alarm calls. Recently in Glendale, Arizona the city passed an ordinance that requires citizens to pay steep fines when police respond to false alarms. These fines range from $100 to $400 depending on the amount of previous false alarm calls received.
The equipment for a video verification system can be costly, but for some customers the price is worth the result. When you compare the potential loss of property if police are unable to respond in time to a real call or the increased risk of fines for false alarm calls, the setup and maintenance fees are well worth the investment.

How Video Verification Works
To those who are unfamiliar, video verification documents a change in local conditions. When a sensor goes into alarm, cameras record clips or open a feed to live video at the premise. The video and/or notification to view the live feed are sent to a central station where operators survey the situation.
With video evidence and other means of verification, such as audio or cross-zoning, central station operators can tell dispatchers more about what is happening at a property. As such, the quality of the process improves, raising the priority for dispatch and hastening response. This is in line with the protocol followed by most law enforcement agencies across the United States.
This is the procedure that the Central Station Alarm Association’s (CSAA) existing ANSI standard for video verification prescribes and it is an excellent starting point from which the industry can advance with input from law enforcement and the insurance industry. It is important for installing security companies to know that video verification is completely dependent on central station service.

Road to Making Gains
For video verification to truly gain acceptance by all ancillary industry stakeholders — from end users, police and the insurance industry — there must be uniformity in how it is applied. With several years of field experience gained by industry stakeholders, some of the advancements for the next generation of verification are being implemented.
Differentiations can be made for residential, commercial and high-value commercial, as well as interior and exterior applications. Within the commercial realm, there are different risk levels to be accounted for, such as the potential loss at a big-box electronics store compared with a sporting goods store that has a stock of weapons and ammunition.
Fortunately, one distinction everyone agrees upon is that professionally installed and monitored systems will garner prioritized response that DIY, self-monitored systems will not enjoy. That alone gives alarm contractors a tremendous selling point to current and prospective customers, especially as some of the largest technology companies enter into the smart-home market with automation systems and smoke/CO detector devices.
While the industry works on these issues, whatever the final form of this standard ends up being, video verification will deliver value for every stakeholder in the battle against property crime. Alarm system owners will get a fast police response and installing contractors will benefit from satisfied customers. At the same time, police remove criminals from the streets and the insurance industry cuts down on claims they have to pay out now and in the future.

The new video verification standard will be a win for everyone involved.

Friday, June 1, 2012

What is IP camera ?


Network IP Cameras have been around for at over a decade now. Only recently have cabling installers began to pay attention to the technology because surveillance cameras have traditionally run on separate coaxial cable. Around 10 years ago, the first digital IP camera connected directly to a data network which changed the future of the surveillance camera industry.

During the early stages, the technology was not as professional as analog cameras. Most cameras were seen as ‘web cameras’, which were used to view objects or events over the internet or a LAN.

Today IP network cameras meet the same requirements and specifications as analog counterparts and in many areas surpass analog camera performance and features . Forecasts show that the network IP camera market share is growing at a much faster rate than its analog competitor and has surpassed the analog camera in market share.

An IP Camera is a networked digital video camera that transmits data over a Fast Ethernet link. IP Cameras (also called “network cameras”) are most often used for IP surveillance, a digitized and networked version of closed-circuit television (CCTV).
Benefits of IP camera over analog technology include:
  • Remote administration from any location.
  • Digital zoom.
  • The ability to easily send images and video anywhere with an Internet connection.
  • Progressive scanning, which enables better quality images extracted from the video, especially for moving targets.
  • Adjustable frame rates and resolution to meet specific needs.
  • Two-way communication.
  • The ability to send alerts if suspicious activity is detected.
  • Lower cabling requirements.
  • Support for intelligent video.
Disadvantages of IP surveillance include greater complexity and bandwidth demands. One alternative for organizations with substantial investment in analog technology is to use a video server to, in effect, turn analog CCTV cameras to IP cameras. A video server is a small standalone server that converts analog signals to a digital format and provides the analog cameras with IP addresses.
Nevertheless, because it offers much more sophisticated capabilities, IP surveillance is increasingly replacing analog CCTV. An industry report from International Data Corporation (IDC) predicts that shipments of IP cameras and related products will increase 75% between 2012 and 2015.

Sunday, August 15, 2010

Fiber Patch Cable for Video Transmision

Fiber patch cable can also be known as fiber jumper or fiber patch cord. It is a fiber optic cable terminated with fiber optic connectors on both ends. It may be directly linked to other equipment allowing you to connect and managing convenience. It's used for making patch cords from equipment to fiber optic cabling. Having a thick layer of protection, it's used to connect the optical transmitter, receiver and the terminal box.
Many applications are used with fiber patch cables, for example, Communication room, FTTH, LAN, FOS, Fiber Optic Communication System, Optical fiber connected and transmitted equipment, Defense combat readiness, etc. Fiber patch cable applies to CATV, Telecommunication network, Computer fiber network and fiber test equipment.

 
There are a couple of major application areas of fiber patch cable. They're computer workplace to outlet and fiber optic patch panels or optical cross connect distribution center. And there are single mode fiber patch cable and multimode fiber patch cable (multimode fiber optic patch cord). Ordinary cables are 125 um in diameter. The inner diameter for single-mode cables is 9 um and multi-mode is 50/62.5 um.
The single mode fiber patch cable is primarily employed for applications involving extensive distances. In fiber-optic communication, a single-mode optical fiber is an optical fiber designed to carry merely a single ray of mode. Modes are the possible solutions of the Helmholtz equation for waves. These modes define the way the wave travels through space, and just how the wave is distributed wide. Waves can have exactly the same mode but have different frequencies. This is the case in single-mode fibers, where we can have waves with various frequencies, but of the same mode, meaning they're distributed wide in the same way, which gives us just one ray of sunshine. Even though the ray travels parallel to the entire fiber, it is often called transverse mode since its electromagnetic vibrations occur perpendicular towards the entire fiber. It's generally yellow, having a blue connector and a long transmission distance.
Multimode fiber optic patch cord, however, is the cable of choice for most common local fiber systems as the devices because they are a lot more cheaper. Multi-mode optical fiber is a type of optical fiber mostly employed for communication over short distances, for example inside a building or on the campus. Typical multimode links have data rates more than sufficient for almost all premises applications. Due to the high capacity and reliability, multi-mode optical fiber is used for backbone applications in buildings. An increasing number of users are taking the benefits of fiber nearer to the user by running fiber towards the desktop in order to the zone. Standards-compliant architectures such as Centralized Cabling and fiber towards the telecom enclosure offer users the opportunity to leverage the distance capabilities of fiber by centralizing electronics in telecommunications rooms, rather than having active electronics on each floor. Multimode fiber is generally, orange or grey, with a cream of black connector along with a short transmission distance.
FiberStore offers many different types of optical fiber patch cables, for example mode conditioning patch cable, armored patch cable, MPO/MTP cable along with other special patch cables. For instance, SC OM3 Mode Conditioning Patch Cable is really a kind of mode conditioning patch cables with the wavelength OM3 and a SC connecter. All mode conditioning fiber optic patch cords are created with duplex cable with a single mode to multimode offset fiber connection part within the two legs.