Showing posts with label PTZ. Show all posts
Showing posts with label PTZ. Show all posts

Saturday, May 1, 2021

Video Wall Magic

Video Wall Magic 

Whenever people talk about CCTV, one of the first associations is video walls. No matter how powerful the servers behind, it is the visual that produces the "wow" effect — even on the most tech-savvy customers. Yet, they often back off, having heard the price. And this is where all EVO Global customers clearly benefit: EVO video wall has just got a major enhancement, and it does not cost you a rupee. EVO by LUXRIOT.

Video walls are widely used everywhere from airports to rock concerts. Traditionally, in CCTV their application includes, but is not limited to, showrooms and control centres. To build a video wall, you take narrow bezel monitors, projectors, or TV sets, and tile them together. Depending on the goal, some or all of them may form one huge screen. This resulting "transformer" display is much better rather than just one large display: it offers customizable shape and size, distributed processing, and superior reliability.

Typically, you would employ additional technologies to make several output devices work as one. EVO Global allows casting a single picture onto a combination of displays from separate workstations. Most importantly: without anything other than just regular Windows display management. EVO is one of the most comprehensive enterprise-level VMS solutions on the market, featuring interactive maps linked to alarms; an advanced event and action manager; analytics tools; video wall support and other components you will definitely appreciate. To ensure the safety of your data, the software also offers edge recording for synchronising all data with IP devices storage, archive replication, advanced system health monitoring and failover, which will reduce the disruption of your video surveillance recordings to zero. SSA Integrate is India Regions business partner.

Fantastic Flexibility

Video walls have been available in EVO Global since its very first versions. So what's different now?

Earlier, we already saw how the Luxriot virtual video wall helps organize collections of displays, including those in different locations. Now, EVO Global offers another option: mosaic display, or, according to a customer, "the real video wall". Previously, you could have a virtual collection of screens, scattered across the place, managed from your office. From now on, EVO Global also gives you an opportunity to combine several local screens into one. Both approaches fit into the video wall definition, yet they have different use case scenarios. And, both retain EVO's convenient and flexible management instruments.

In other words, EVO now acts as your video wall controller — no middleware required. The displays may be independent, maybe even driven by different workstations. But, in EVO they behave as a single canvas. Clever algorithms ensure full synchronization between the screens, guaranteeing zero delays.

Such architecture provides notable flexibility. Not only can you re-arrange the displays or add new ones at any point, but you also are free to use variegated hardware. This is true for both workstations and display brands. While a consistent video wall solution looks best on homogenous LCD/LED panel sets, a temporary replacement or a quick demo set-up becomes a piece of cake.

As you would expect, the rest of EVO Global video wall functionality remains the same. Once configured, any video wall screen contents can be controlled from anywhere in the universe.

Smooth Setup

Let's consider a use case. 
Four display panels tiled contiguously, driven by two workstations. The task for EVO will be to display one high-resolution picture using all four screens. Simultaneously, an extra display in the operator's room should preview the same layout.
Briefly, the plan is: create a video wall, install clients, assign client displays to the video wall screens.

Add a single screen video wall in EVO Console

Detailed description

Step 1: in your EVO Console, add a new video wall. For the current setup, the wall layout will be simply one screen, 1x1 grid. We shall use the same video wall screen for both the showroom and the operator's room.

Step 2: install EVO Monitor on all client workstations. The client application does not require a license, and you can use either 32- or 64-bit packages. Each application instance may have one or several windows. Therefore, the four panels can be split between two, three, or four workstations. Let's assume we have two client PCs here, each driving two displays.

Step 3: link physical displays to video wall screens. In this case, we have only got a single video wall screen, and we shall use it twice.

First, in the showroom, all 2x2 displays will belong to the video wall screen with a "tiled" option. To do this, open the multi-display settings, select a window, tick the Video wall screen setting, then also tick the Tiled display option on the right. In the mosaic preview, enter the grid size and then select the part of the big screen that is occupied by the underlying physical display.

Second, in the operator's room, simply point the monitor to the same video wall screen, without selecting the "tiled" setting. As a result, the same output will be produced on a single preview display.

Create a tiled video wall in EVO Monitor via multi-display setup

Step 4: have fun managing the video wall remotely or with E&A. For manual remote administration, there is a separate tab in the EVO Monitor application called — who would have thought? — Video wall. To start, drag and drop your video wall from the Resources section on the left. And then, place the desired layouts, channels and maps onto the preview area below. All adjustments will take instant effect and you will notice the changes in both rooms. Don't forget to save the current layout as start-up by clicking the "three stripes" button in the upper right corner of the preview area.

Tips & Tricks

To make the most out of the tiled video wall, remember a few aspects:
  • make sure the video cards meet the hardware requirements for EVO Monitor
  • calibrate your displays to match the brightness and color settings
  • use displays with the same aspect ratio and resolution
  • choose displays with the near-zero bezel (frame) and minimize the gap between them

Hardware requirements

Refer https://www.luxriot.com/support/hardware-calculator/

Benefits

EVO Global video wall feature is a strikingly simple yet powerful solution for anyone. All the more, we are proud to present the "stretchy" video wall option as a further advantage.

  • Feel free to experiment with any size or shape, and re-build your video wall at any time. Any alterations to the original layout only need a few fine-tune clicks on the client side.
  • The feature is already included with your EVO Global license - no additional costs involved.
  • On top of that, the EVO Global video wall does not have strict requirements for the used display type. You do not have to stick to a particular brand, never mention additional software or hardware drivers. This also means you can start with the existing infrastructure, and the final solution may implore little or no extra investments at all.
  • Easy setup and re-configuration.
  • EVO Global redundancy covers for video walls, too, — have you set up your mirroring server?
  • Control your video walls remotely from anywhere in the world. All changes are effective immediately. For routine scenarios, use our advanced Event & Action management: any video wall contents will pop up and disappear automatically.

Luxriot Evo Global, is not only offering 64-bit speed and all the necessary tools for setting up an absolute situational alertness system aimed to respond quickly to events, but also introduces a central server governance hierarchy of all the components. To know more on this, can mail to ssaintegrate@gmail.com


Thursday, April 1, 2021

The end of DVR in Video Surveillance

The end of DVR in Video Surveillance 

People are moving away from outdated DVRs in analog CCTV world to a more standardized and scalable IP video storage environment. The trends which are paving way for the demise of DVR in video surveillance field are as follows-

Edge Storage significance- People are nowadays going with the best available technology for their surveillance needs and are showing a lot of interest on edge based surveillance cameras. For this reason, IP camera vendors are getting busy in increasing the storage capacity of their SD/MicroSD Card driven network cameras. In next five years, there is a possibility that IP cameras with 1TB on-board video storage will be available to serve the purpose of Edge based video surveillance. There is a leeway that these edge storage enabled cameras can be used as standalone surveillance devices or in conjugation with a centrally located video storage solution, in order to achieve failover redundancy.

Network Attached Storage high availability will also play a vital role in the demise of the DVR. Interestingly, this deployment can be used in conjugation as a standalone archiving solution or in conjugation with an edge based network device. In case of small surveillance projects, both SD card and NAS storage systems will be good deployment solutions. Usually, these solutions will be a perfect match to analog technology deployment standards employed in retail stores or in offices.

Lower cost per Gigabyte of storage drives is the next trend which may pave way for the death of DVR. IT sector will find a strong focus from big data manufacturers on physical security and its associated video management system plus video analytics. The need for longer video storage periods and higher quality of video will also increase the need of higher storage capacity devices. People will then have the flexibility to just dump the appliance and go with reference architecture from the server manufacture. Again this centralized storage approach will also pair up with edge or intermediary secondary storage such as decentralized cameras, which are a perfect solution in environments where failover and bandwidth issues remain as main criterion.

Migration to cloud by IT sector will also pave way for the demise of DVR, as hosted video surveillance services will be on high demand. With existing partnerships in between software, camera hardware and cloud service providers getting strong; a fast, easily accessible and scalable solution for network video will be on high demand. Multi-location gas stations, retail sectors and quick server organizations have already become patrons of cloud based video surveillance storage. Seeing the secure central access enabled video approach, many large and mid-range organizations which have operations in geographically separated environments will go for cloud approach. As cloud based video surveillance cuts down the number of IT staff, its craze will double up by end of 2021.

So, presently for the above said reasons, the demise of DVR can predicted for sure. Feel free to speak up your mind on the said trends and let us know your opinion on DVRs existence in future of video surveillance.


Saturday, February 4, 2017

Factors to Consider When Purchasing a PTZ IP Camera

Factors to Consider When Purchasing a PTZ IP Camera

PTZ IP cameras are commonly used for surveillance in large home compounds and public areas such as commercial car parks, stadiums and conference halls. PTZ stands for Pan Tilt Zoom, and that means you can use the IP software for cameras through the internet or your network to manipulate what the IP camera displays.
Different IP camera brands sport different kinds of zooms, and lower end cameras will simply feature the digital zoom. Proper optical zoom is the recommendable zoom type and this, together with the price, will always be specified in the product description.
Basically, a PTZ IP camera lets the user view real time images of the protected areas over the internet. You can simply monitor your office, home, building, yard or anywhere from miles away using a PC or a high end smartphone, tablet or PDA. Some network cameras even feature built-in Web server functions such that the IP camera doesn’t necessarily need to be connected to a computer.

DESIGN
IP PTZ cameras are traditionally spherical in shape, and this is mainly because they are meant to be completely mobile. Either the network camera itself (the sensor and camera mechanism) has been designed to take the shape of a sphere, and held so that it can pivot accordingly, or the camera is structured more traditionally and cased in a spherical protective bubble where it can tilt, pan and zoom and take images from within the shield.

NIGHT VISION
IP cameras with night vision capabilities come with built-in LED lighting to enable object visibility in dark settings, or at night. For outdoor surveillance, specifically in places without artificial lighting, night vision cameras may come in handy.

PTZ vs PT
Some IP cameras can only pan and tilt but not zoom. The two functions will usually be enough if the area you want to cover is small, like, say, your living room. However, if you want to cover a large area such as a shopping mall, an IP camera with the zoom function will be more effective.

HOW DO THEY WORK ?
PTZ IP cameras are typically controlled using remote systems. Users can do an initial configuration to have the camera moving and rotating in a certain predetermined pattern, or do it manually using a keyboard or mouse controlled interface. The angle of the lens can also be manually controlled, and this facilitates automatic position adjustment of the camera.
BENEFITS OF PTZ IP CAMERAS
·         User does not need to be close to the camera to operate it.
·         Requires little maintenance after it has been installed (except for regular cleaning of course).
·         Has 360-degree mobility. This way, it can detect and track objects as they move in the covered area as long as the target object is within lens range.

Factors to Consider When Purchasing a PTZ IP Camera
INDOOR OR OUTDOOR USE ?
If you’re looking for a PTZ IP camera for outdoor surveillance, you need one with night vision, weatherproof enclosure, miniature architecture for “outsider” visibility reasons, and vandal-proof capability for fortification in high crime areas.

YOUR DESIRED CAMERA FORM FACTOR
Each form factor has its own benefits, and the brand you opt for should cover all your surveillance requirements. Would you prefer a dome-shaped or an inconspicuous mini-dome camera? A wireless option or just an ordinary corded PTZ IP camera? You know your place and specifications best.
LEVEL OF DETAIL
When weighing different camera alternatives, you need to be sure of the detail level you want to see in your images. For wide area surveillance, you need a higher resolution, of course, as this will allow you to view even the furthest of images in relatively great detail.
Another factor that affects a camera’s resolution is its field of view (FOV). This is the viewable expanse of a given scene taken by the camera, and is sometimes referred as the angle of coverage or angle of view. A small FOV generally leads to the target object appearing smaller than it would in a fairly larger FOV.

The type of lens featured in the camera will also have an impact on resolution and field of view alike. A lens with low focal length number will bring about a wide field of view but less magnification while a higher focal length number will provide more magnification.

PTZ IP cameras, just like ordinary cameras, come with different resolution capabilities, and if you choose a high-resolution one, you also need to choose a high resolution megapixel lens so that the resolution required to produce a clear and detailed image can be maintained. If you combine a high resolution camera sensor with a less powerful lens, then your images will not be as detailed and crisp as you may desire.
POWER
PTZ cameras have multiple motors built-in which draw a considerable amount of power compared to a regular surveillance camera. Power can be supplied locally at the camera location or a cable can be pulled from a power source to the camera. The size of the wire dictates the maximum distance the cable can extend from the camera to the power source. See the chart below.
·        12 Gauge Wire – Maximum Distance 320 Feet
·        14 Gauge Wire – Maximum Distance 225 Feet
·        16 Gauge Wire – Maximum Distance 150 Feet
·        18 Gauge Wire – Maximum Distance 100 Feet


Each PTZ camera is shipped with its own power supply. Some cameras operate on 12v DC and some on 24v AC. Make sure you note the type of power the camera uses and that the power supply matches the camera. 

Sunday, August 16, 2015

iPhone and iPad Security Camera Apps

iPhone and iPad Security Camera Apps
As a well-known eSecurity Professional in India I got many appreciation call/mail for my Blog writing. Thanks to all of you for read and understand my wrong English writing on my blog. Recently I visit Bhubaneswar (Located in India, Capital of Orissa) and face some question, customer ask you people highlight our NVR/ DVR is support Remote viewing on iPhone & iPad, but we are not enjoy the benefits of mobile security camera monitoring. Our System Integrator / Installer technical person come and say something that we are not understands. So you’ve come to the right place. Many IP camera and NVR manufacturers have unveiled top-of-the-line mobile monitoring apps compatible with the iPhone and iPad. A list of manufacturer iPhone security camera apps and iPad security camera apps is provided below, each with a detailed description of noteworthy features.

Optica
iPhone & IPad Security Camera App Name: OpticaMobile & OpticaMobile HD
Optica, a leading manufacturer of high-definition IP cameras, offers OpticaMobile and OpticaMobile HD mobile apps designed for iPhone, iPad, and Android devices. OpticaMobile delivers a wide spectrum of features to improve the viewing experience for all Optica IP cameras, including quad-view mode, live video streams, bookmarking, audio, snapshots, dual stream support, and PTZ control of Optica’s P218Z speed dome. It’s an easy and convenient way to tap into your Optica IP camera system while on the go. OpticaMobile HD is built for use on the iPad, while OpticaMobile is compatible with iPhone and Android devices.

Milestone
iPhone & IPad Security Camera App Name: XProtect Mobile
Milestone is one of the leading providers of video management software. Always on the forefront of IP video technology, Milestone offers an iPhone security camera app designed for use with the iPhone 3GS, iPhone 4, iPhone 4S, iPhone 5, iPhone 6, and iPad. To use the iPhone and iPad app, you must first have Milestone’s free XProtect Mobile Server installed and configured, which you can download from the Milestone website. Once installed on your iPhone, you can view live video from several cameras simultaneously; play back recorded images; control PTZ cameras; connect to cameras from more than one site; and send images to others via MMS and email. It’s by far one of the best mobile monitoring apps out there.

Smartvue
iPhone & IPad Security Camera App Name: Smartvue 9
An all-star player in the NVR market, Smartvue offers a complimentary iPhone and iPad monitoring app compatible with a wide range of IP camera brands and styles such as Axis, Sony, Optica, Vivotek, and Panasonic. This innovative app allows you to view numerous cameras at once, slide through live images, connect to different cameras, change display options, see off-site camera monitors, view recorded video, and search archived footage. It’s easy to use, has an intuitive design, and operates through simple touch screen functions such as scrolling and pinch-to-zoom.

Vivotek
iPhone & IPad Security Camera App Name: Vivotek iViewer
The iViewer iPhone security camera app created by Vivotek is compatible with the iPhone 3GS, iPhone 4, iPhone 5, iPhone 6 and iPad devices. With the iViewer app installed on your iPhone or iPad, you can view your live camera feed anytime, anywhere. You’re not limited to just one camera either; the iViewer supports hundreds of live camera feeds from innumerable server connections. The app gives you complete control of your live video, including PTZ camera control, a snapshot command to capture specific video frames, real-time switching of cameras to change displays as needed, and saving your display settings. The app also features remote playback so you can browse through recorded images for peace of mind. Additionally, you can search recorded video via a date and time, and playback recorded video in time intervals of 1, 2, 5, and 10 minutes.

QNAP
iPhone & IPad Security Camera App Name: VMobile
NVR manufacturer QNAP offers a free mobile monitoring app called VMobile that works with most versions of the iPhone as well as the iPad. Using the VMobile app, you can view your IP cameras and playback recorded video from the VioStor NVR series. Unique to the VMobile app is its ability to connect with hundreds of network cameras of varied brands. You’ll have access to breakthrough mobile monitoring features like PTZ control, notification of events and snapshots, adjustable viewing modes, and recorded video playback.

Everfocus
iPhone & IPad Security Camera App Name: MobileFocus
Everfocus is one of the world’s most trusted manufacturers of CCTV camera systems and DVRs. The MobileFocus app supports multi-touch control for zooming in on images, quick access to preset positions, sequence mode, image snapshots of real-time video, PTZ control, full screen displays, live audio, and device management, among many other convenient features. The app currently works with all Paragon Series DVRs and HD Series DVRs.

Monday, July 20, 2015

Design of CCTV System

CCTV system design
Designing a CCTV system is a complex task, requiring at least basic knowledge of all the stages in a system, as well as its components. But more importantly, prior to designing the system, we need to know what the customer expects from it.

Understanding the customer’s requirements
The first and most important preparation before commencing the design is to know and understand the customer’s requirements. Customers can be technically oriented people, and many understand CCTV as well as you do, but most often they are not aware of the latest technical developments and capabilities of each component.
The most important thing to understand is the general concept of the surveillance the customer wants, Constant monitoring of cameras and activities undertaken by 24-hour security personnel, or perhaps just an unattended operation (usually with constant recording), or maybe a mixture of the two. Once you understand their general requirements, it might be a good idea to explain to them what is achievable with the equipment you would be suggesting. This is reasonably easy to accomplish with smaller and simpler systems, but once they grow to a size of more than 10 cameras some of which could be PTZs, a few monitors, more than one control point, a number of alarms, VCRs, and the like, things will get tougher.

Many unknown variables need to be considered: What happens if a number of alarms go off simultaneously? Which monitor should display the alarms? Will the alarms be recorded if the DVR/VCR(s) is/are playing back? What is the level of priority for each operator? And so on.

Those are the variables that define the system complexity and as in mathematics, in order to solve a system with more variables, one needs to know more parameters. They can be specified by the customer, but only after the customer has understood the technical capabilities of the equipment.

Understandably, it is imperative for you, as a CCTV expert, to know the components, hardware, and software you would be offering and to achieve what is required in the best possible way. You can create a favorable impression in the customer’s mind if at the end you give him or her as much as, or even more than, what you have promised. You will prove unsatisfactory if you do not. Remember that if the customer is fully satisfied the first time, chances are he or she will come back to do business with you again. To put it simply: Do not claim the system will do this and that if you are not certain; make sure your system delivers what you say it will.

So, to design a good, functional system, one has to know the components used, their benefits and limitations, how they interconnect, and how the customer wants them to be used. The first few parts are assumed to be fulfilled, since you would not be doing that job unless you knew a few things about CCTV. The last one – what the customer wants – can be determined during the first phone call or meeting.

Usually, the next step is to conduct a site inspection. Here is a short list of questions you should ask your customer prior to designing the system and before or during the site inspection:

• What is the main purpose of the CCTV system?
If it is a deterrent, you need to plan for cameras and monitors that will be displayed to the public.
If it is a concealed surveillance, you will need to pay special attention to the camera type and size, its protection, concealed cabling, and the like, as well as when it is supposed to be installed (after hours perhaps).

• Who will be the operator(s) ?
If a dedicated 24 hour guard is going to use the system, the alarm response needs to be different from that expected when unattended, or a partially attended, system operation.

• Will it be a monochrome or color system ?
The answer to this question will dictate the price, as well as the minimum illumination response.
Consequently, the lighting in the area needs to be looked at. A color picture will give more details about the observed events, but if the intention is to see images in very low light levels, or with infrared lights, there is no other alternative but B/W cameras (unless the customer is prepared to pay for some of the new cameras available on the market that switch between color and monochrome operation).
The price of a color system is dictated not only by the cameras, but also by the monitors, multiplexers, and/or quads (if any). Needless to say, sequential or matrix switchers, as well as time-lapse VCRs, are the same for both B/W and color.

• How many cameras are to be used ?
A small system with up to half a dozen cameras can be easily handled by a switcher or multiplexer, but bigger systems usually need a matrix switcher or a larger number of switchers and multiplexers.

• How many of the cameras will be fixed focal length and how many PTZ ?
There is a big difference in price between the two because if a PTZ camera is used instead of a fixed one, the extra cost is in the zoom lens (as opposed to the fixed one), the pan and tilt head or dome, the site driver, and the control keyboard to control it. But the advantages your customer will get having a PTZ camera will be quadrupled. If on top of this, preset positioning PTZ cameras are used, the system flexibility and efficiency will be too great to be compared with the fixed camera system. A system with only one PTZ camera and half a dozen fixed ones is a choice that may require a matrix switcher for control and will increase the price dramatically (compared to a system with only fixed cameras). Alternatively, single PTZ camera control can be achieved via a special single-camera digital or hard-wired controller, but they would also increase the price considerably. So, if a PTZ camera is required, it would be more economical to have more than one PTZ camera.

• How many monitors and control keyboards are required?
If it is a small system, one monitor and keyboard is the logical proposal, but once you get more operators and/or channels to control and view simultaneously, it becomes harder to plan a practical and efficient system. Then, an inspection of the control room is necessary in order to plan the equipment layout and interconnection.

• Will the system be used for live monitoring (which will require an instant response to alarms), or perhaps recording of the signals for later review and verification ?
This question will define whether you need to use DVR/VCR(s) with multiplexer(s). If you have a matrix switcher, you will still need a multiplexer or two in addition. Have in mind that the time lapse mode you are going to use depends on how often the tapes can be changed, and this defines the update rate of each camera recorded. Choose, whenever possible, a pair of 9-way (or 8-way) multiplexers instead of one 16-way, if you want to minimize the time delay in the recording rate update.

• What transmission media can be used on the premises ?
Usually, a coaxial cable is taken as an unwritten rule and installation should be planned accordingly. Sometimes, however, there is no choice but to use a wireless microwave or even a fiber optics transmission, which will add considerably to the total price. If the premises are subject to regular
lightning activity, you had better propose fiber optics from the beginning and explain to the customer the savings in the long run. So, you have to find out more about the environment in which the system is going, what is physically possible and what is not, and then plan an adequate video and data transmission media.

• Lastly and probably the most important thing to find out, if possible, is what sort of budget is planned for such a CCTV system?
This question will define and clarify some of the previous queries and will force you to narrow down either the type of equipment, the number of cameras, or how the system is expected to work. Although this is one of the most important factors, it should not force you to downgrade the system to something that you know will not operate satisfactorily.
If the budget cannot allow for the desired system, it is still good to go back to the customer with a system proposal that you are convinced will work as per his or her requirements (even if it is over budget) and another one designed within the budget with as many features as the budget will allow for. This will usually force you to narrow down the number of cameras, or change some from PTZ to fixed. The strongest argument you should put forward when suggesting your design is that a CCTV system should be a secure one, which can only be the case if it is done properly. Thus, by having a well-designed system, bigger savings will be made in the long run.

By presenting a fair and detailed explanation of how you think the system should work, the customer will usually accept the proposal.

Site inspections
After the initial conversation with the customer and assuming you have a reasonably good idea of what is desired, you have to make a site inspection where you would usually collect the following information:
• Cameras: type (i.e., B/W or color, fixed or PTZ, Resolution, etc.).
• Lenses: angles of view, zoom magnification ratio for zoom lenses (12.5–75 mm, 8–80 mm, etc.).
• Camera protection: housing type (standard, weatherproof, dome, discrete, etc.) mounting.
• Light: levels, light sources in use (especially when color cameras are to be used), east/west viewing direction. Visualize the sun’s position during various days of the year, both summer and winter. This will be very important for overall picture quality.
• Video receiving equipment: location, control room area, physical space, and the console.
• Monitors: Resolution, size, position, mounting, and the like.
• Power supply: type, size (always consider more amperes than what are required). Is there a need for an uninterruptable power supply (UPS)? (VA rating in that case).
• If pan/tilt heads are to be used: type, size, load rating, control (two wire – digital or multi-core). Is there a need for preset positioning (highly recommended for bigger systems)? Where are they going to be mounted? What type of brackets ?
• Make a rough sketch of the area, with the approximate initial suggestions for the camera positions. Take into account, as much as possible, the installer’s point of view. A small change in the camera’s position, which will not affect the camera’s customer. An unwritten golden rule for a good picture is to try and keep the camera from directly facing light.
• Put down the reference names of areas where the customer wants (or where you have suggested) the cameras to be installed. Also write down the reference names of areas to be monitored because you will need them in your documentation as reference points. Be alert for obvious “no-nos” (in respect to installation), even if the customer wishes something to be done. Sometimes small changes may result in high installation costs or technical difficulties that would be impossible to solve. It is always easier to deter the customer from making changes by explaining why in the initial stage, rather than having to do so later in the course of installation, when additional costs will be unavoidable.
To know more just read Condensed Code BS EN 62676-4 and BS EN 50132-7, BS EN 62676-4 Clause 4.4 & BS EN 62676-4 Clause 4.5.

Designing and quoting a CCTV system
With all of the above information, as well as the product knowledge (which needs constant updating), you need to sit down and think.

Designing a system, like designing anything new, is a form of art. As is true of many artists, your work may not be rewarded immediately, or it may not be accepted for some reason. But think positively and concentrate as if that is to be the best system you can propose. With a little bit of luck you may make it the best, and tomorrow you can proudly show it to your colleagues and customers. Different people will use different methods when designing a system. There is, however, an easy and logical beginning.

Always start with a hand drawing of what you think the system should feature. Draw the monitors, cameras, housings, interconnecting cables, power supplies, and so on. While drawing you will see the physical interconnection and component requirements. Then you will not omit any of the little things
that can sometimes be forgotten, such as camera brackets, types of cable used, and cable length. Making even a rough hand sketch will bring you to some corrections, improvements, or perhaps further inquiries to the customer. You may, for example, have forgotten to check what the maximum distance for the PTZ control is, or how far the operators are to be from the central video processing equipment, power cable distances, voltage drops, and so on.

Once you have made the final hand drawing, you will know what equipment is required, and it is at this point that you can make a listing of the proposed equipment. Then, perhaps, you will come to
the stage of matching camera/lens combinations. Make sure that they will fit in the housings or domes you intend to use. This is another chance to glance through the supplier’s specifications booklet. Do not forget to take into account some trivial things that may make installation difficult, like the coaxial cable space behind the camera (remember, it is always good to have at least 50 mm for BNC terminations), the focusing movement of a zoom lens (as mentioned earlier in the chapter on zoom lenses, in a lot of zoom lenses focusing near makes the front optical element protrude for an additional couple of millimeters), and so on.


The next stage is pricing the equipment – costs, sales tax and duty, installation costs, profit margins and the most important of all (especially for the customer) the total price.

Do not forget to include commissioning costs in there, although a lot of people break that up and show the commissioning figure separately. This is more of a practical matter, since the commissioning cost may vary considerably and it could take longer or shorter than planned. General practical experience shows that it will always take at least three times longer than planned. Also, in the commissioning fees, time should be allocated for the CCTV operator’s training.

After this step has been completed, you need to make a final and more accurate drawing of the system you are proposing. This can be hand drawn, but most CCTV designers these days use computers and CAD programs. It is easier and quicker (once you get used to it), and it looks better.
Also, the hand-calculated price needs to be written in a quotation form, with a basic explanation of how the system will work and what it will achieve. It is important for this to be written in a concise and simple, yet precise form, because quotations and proposals (besides being read by security managers and technical people) are also read by nontechnical people such as purchasing officers and accountants.

Often, spreadsheet programs are used for the purpose of precise calculation, and this is another chance to double-check the equipment listing with your drawing and make sure nothing has been left out. As with any quotation, it is more professional to have a set of brochures enclosed for the components you are proposing.

In the quotation, you should not forget to include your company’s terms and conditions of sale which will protect your legal position.

If the quotation is a response to a tender invitation, you will most likely need to submit a statement of compliance.

This is where you confirm whether your equipment complies or does not comply with the tender requirements. This is where you also have to highlight eventual extra benefits and features your equipment offers. In the tender, you may also be asked to commit yourself to the progress of the work and supply work insurance cover, in which case you will need a little bit of help from your accountant and/or legal advisor.


Many specialized companies only design and supply CCTV equipment, in which case you will need to get a quote from a specialized installer, who, understandably, will need to inspect the site. It is a good practice, at the end, to have all the text, drawings, and brochures bound in a single document, in a few copies, so as to be practical and efficient for reviewing and discussions.

Installation considerations
If you are a CCTV system designer, you do not have to worry about how certain cables will be pulled through a ceiling, raisers, or camera pole mounting; that is the installer’s job. But it would be very helpful and will save a lot of money, if you have some knowledge in that area. If nothing else, it is a good practice, before you prepare the final quotation, to take your preferred installer on site, so that you can take into account his or her comments and suggestions of how the practical installation should be carried out.

First, the most important thing to consider is the type of cable to be used for video, power, and data transmission, their distances and protection from mechanical damage, electromagnetic radiation, ultraviolet protection, rain, salty air, and the like. For this purpose it is handy to know the surrounding area, especially if you have powerful electrical machinery next door, which consumes a lot of current and could possibly affect the video and control signals. Powerful electric motors that start and stop often may produce a very strong electromagnetic field and may even affect the phase stability of the mains. This in turn will affect the camera synchronization (if line-locked cameras are used) as well as the monitor’s picture display.

For example, there might be a radio antenna installed in the vicinity, whose radiation harmonics may influence the highfrequency signals your CCTV system uses.
Mounting considerations are also important at both the camera and monitor end. If poles are to be installed, not only the height, but also the elasticity of the poles is important. Steel poles, for example, are much more elastic than concrete poles. If a PTZ camera is installed, the zoom lens magnification factor will also magnify the pole’s movement which could result from wind, or vibrations from the pan/tilt head movement itself. This magnification factor is the same as the optical magnification (i.e., a zoom lens, when fully zoomed in, may magnify a 1mm movement of the camera due to wind to a 1 m variation at the object plane).
The shape of the pole is also very important
– hexagonal poles are less elastic than round ones of the same height and diameter.
The same logic applies to camera and pan/tilt head mounting brackets. A very cheap bracket of a bad design can cause an unstable and oscillating picture from even the best camera.
If the system needs to be installed in a prestigious hotel or shopping center, the aesthetics are an additional factor to determine the type of brackets and mounting. It is especially important then not to have any cables hanging.

The monitoring end demands attention to all aspects. It needs to be durable (people will be working with the equipment day and night), or aesthetical (it should look good) and practical (easy to see pictures, without getting tired of too much noise and flashing screens).
Since all of the cables used in a system wind up at the monitoring end and in most cases this is the same room where the equipment is located, special attention needs to be paid to cable arrangement and protection.

Often, cables lying around on the floor for a few days (during the installation) are subject to people walking on them, which is enough weight to damage the cable characteristics, especially the coaxial cable impedance. Remember, the impedance depends on the physical relation between the center core, the insulation, and the shield. If a bigger system is in question, it is always a better idea to propose a raised floor, where all the cables are installed freely below the raised floor.
Sometimes, if a raised floor is not possible, many cables can be run over a false ceiling. In such cases special care should be taken to secure the cables as they could become very heavy when bundled together.

Larger installations may want a patch panel for the video signals.
This is usually housed in a 19'' rack cabinet, and its purpose is to break the cables with special coax link connectors so as to be able to reroute them in case of a problem or testing.
Many installers fail to get into the habit of marking the cables properly. Most of them would know all of the cables at the time of installation, but two days later they can easily forget them. Cable marking is especially critical with larger and more complex systems. Insist on proper and permanent cable markings as per your drawings. There are plenty of special cable-marking systems on the market. In addition, listing of all the numbers used on the cables should be prepared and added to the system drawings.

Remember, good installers differ from bad ones in the way they terminate, run, arrange, and mark the cables, as well as how they document their work.

Drawings
There is no standard for drawing CCTV system block diagrams, as there is in electronics or architecture. Any clear drawing should be acceptable as long as you have clearly shown the equipment used (i.e., cameras, monitors, VCRs) and their interconnection.
Many people use technical drawing aids, such as CAD programs, or other PC or Mac-based drawing packages. Depending on the system size, it might be necessary to have two different types of drawings: one of a CCTV block diagram showing the CCTV components’ interconnection and cabling requirements, while the other could be a site layout with the camera positions and coverage area. In smaller installations, just a block diagram may be sufficient.
The CCTV block diagram needs to show the system in its completeness, how the components are interconnected, which part goes where, what type of cable is used, and where it is used.
If the site layout drawing is well prepared, it can later be used as a reference by the installer, as well as by your customer and yourself when reviewing camera locations, reference names, and discussing eventual changes.
When the CCTV system is installed and the job is finished, drawings may need small alterations, depending on the changes made during the installation. After the installation, the drawings are usually enclosed with the final documentation, which should also include manuals, brochures, and other relevant documentation.


Commissioning
Commissioning is the last and most important procedure in a CCTV system design before handing it over to the customer. It involves great knowledge and understanding of both the customer’s requirements and the system’s possibilities. Quite often, CCTV equipment programming and setup are also part of this. It includes video matrix switcher programming, time-lapse VCR programming, camera setup, and so on.
Commissioning is usually conducted in close cooperation with the customer’s system manager and/or operator(s), since a lot of settings and details are made to suit their work environment.
The following is a typical list of what is usually checked when commissioning:
All wiring is correctly terminated.
Supply voltage is correct to all appropriate parts of the system.
Camera type and lens fitted are correct for each position.
Operation of auto irises under various light levels is satisfactory.
If VCRs are fitted, they should be recording in the most efficient time-lapse mode (especially when multiplexed cameras are being recorded).
If DVRs are installed, the pictures per second performance and image quality (compression setting) should be checked .
All system controls are properly functioning (pan/tilt, zoom, focus, etc.)
The setting of all pan and tilt limits is correct.
Preset positioning, if such cameras are used, is correct.
The level of supplementary lighting is satisfactory.
The system must continue to work when the main supply is disconnected, and a check should be made as to how long it does (if UPS is used).
Commissioning larger systems may take a bit longer than the smaller ones. This is an evolution from the system on paper to the real thing, where a lot of small and unplanned things may come up because of new variations in the system concept. Customers, or users, can suggest the way they want things to be done, only when they see the initial system appearance. Commissioning in such cases may therefore take up to a few days.
Commissioning under  BS EN 62676-4 Clause 4.6 & BS EN 62676-4 Clause 13.

Training and manuals
After the initial setup, programming, and commissioning are finished, the operators, or system users, will need some form of training.
For smaller systems this is fairly straightforward and simple. Just a verbal explanation may be sufficient, although every customer deserves a written user’s manual. This can be as simple as a laminated sheet of paper with clearly written instructions.

Every piece of equipment should come with its own User’s Manual, be it a time lapse VCR, a camera, or a switcher, but they have to be put together in a system with all their interconnections and this is what has to be shown to the customer. Every detail should be covered, especially alarm response and the system’s handling in such cases. This is perhaps the most important piece of information to the operators.

For larger systems, it is a good idea to bind all the component manuals, together with the system drawings, wiring details, and operator’s instructions, in a separate folder or a binder. Naturally, for systems of a larger size, training can be a more complex task. It may even require some special presentation with slides and drawings so as to cover all the major aspects.

Good systems are recognized not only by their functionality but also by their documentation.

Handing over
When all is finished and the customer is comfortable with what he or she is getting, it is time to hand over the system. This is an official acceptance of the system as demonstrated and is usually backed by the signing of appropriate documents.
It is at this point in time that the job can be considered finished and the warranty begins to be effective.
From now on, the customer takes over responsibility for the system’s integrity and operation.
If customers are happy with the job, they usually write an official note of thanks. This may be used later, together with your other similar letters, as a reference for future customers.
Documentation consider BS EN 62676-4 Clause 4.8, BS EN 62676-4 Clause 15.3 & BS EN 62676-4 Clause 16.

Preventative maintenance
Effective and regular maintenance of a CCTV surveillance system is essential to ensure that the system remains reliable at all times. It is advisable that maintenance of the CCTV system should be carried out by the company which installed the system. However, the maintenance company should have the means, including necessary spare parts and documentation, to meet the recommendations given here.
Note: This recommendation does not place an obligation upon customers who purchase their systems to have them maintained by the installing company. Maintenance is a matter of agreement between the customer and the installing company or a separate maintenance company. Maintenance comes under BS EN 62676-4 Clause 17 & SC CoP Guiding Principle 10.

The preservation of security within the maintenance company is of paramount importance and steps should be taken to ensure the safe keeping of all customers’ equipment and documentation relating to a particular installation/contract.

Note: BS EN 50132-7 states that “CCTV systems should be maintained in accordance with the schedule supplied by the system designer or supplier”, but does not detail any specific maintenance requirements. These guidelines give specific advice for the maintenance of CCTV surveillance systems, and provide examples of the type of documentation required to be used by the service company.

A maintenance company should ensure that adequate vetting of all employees is carried out. All employees, who visit a customer’s premises, shall carry identification cards which should include a photograph and signature of the bearer, the company’s name, contact details and a date of expiry (maximum of 3 years).
Each service technician employed by the maintenance company should carry a range of tools, test equipment and other equipment to enable them to perform their functions satisfactorily. Specialist tools, test equipment and plant should be available for deeper investigation if necessary.
Note: Disconnections, for whatever reason, should be recorded on a maintenance record and authorised by the client or his representative.
The maintenance company’s organisation should be so staffed as to ensure that the recommendations of this Code of Practice can be met at all times. The following factors should be taken into consideration:
1.       the number of installations to be serviced
2.       the complexity of the installations;
3.       the geographical spread of the installations in relation to the location of the maintenance company, its branches and its service personnel
4.       the method of calling out service personnel outside normal office hours, where applicable.
5.       Service personnel should be adequately trained and training should be updated whenever appropriate.
Maintenance Service is 3 types but scope of work is same.
A.   Preventive Maintenance service.
B.   Corrective Maintenance service.
C.   Performance Maintenance service.

http://arindamcctvaccesscontrol.blogspot.in/2014/09/service-and-maintenance-for-cctv.html


Note: The BS EN standards BS EN 62676-2-X comprising part 1, 2 and 3, provide detailed guidelines to manufacturers as to how they should implement IP video transmission products.

An end user is unlikely to benefit by reading the 62676-2-X standards. They may instead be involved in a buying decision which could place reliance on claims of conformance to the part of the BS EN standard the manufacturer chose to implement. Interoperability of equipment is not solely reliant on the requirements included in the BS EN standards in their current form. There is no guarantee that a product which simply claims BS EN 62676 compliance will provide full compatibility with another claiming the same compliance although it should allow for a minimum level of image transfer. 

Installers, users and specifiers should treat claims of interoperability between manufacturers products with caution. The parts of the BS EN standard which focus on interoperability, are 62676-2-2, which describes the PSIA guidelines for interoperability of IP Video devices, and 62676-2-3, which describes the ONVIF guidelines for interoperability.

ONVIF and PSIA, are at their base level, a common set of commands allowing basic communication between devices but this does not guarantee that the devices will function to the full potential of their design. Issues with product firmware and software should also be considered: a change of firmware / software versions should be tested separately to ensure continued interoperability. Whilst the specifications try to take this into account, the number of products claiming to be conformant currently makes this an impossible task.

Claims by product manufacturers that PSIA or ONVIF compliance means that users do not have to check that the products work together should be treated with great caution. It is strongly recommended that all such products are tested before being deployed.

Sunday, March 8, 2015

RS422, RS485, comparison with RS232

RS232 is well-known due to popularity of today’s PC’s, unlike the RS422 and RS485. These are used in industry for control systems and data transfers (small volumes, less than hundreds of Mb/s).
So, what is the main difference between RS 232 and RS 422 & 485? The RS 232 signals are represented by voltage levels with respect to ground.

There is a wire for each signal, together with the ground signal (reference for voltage levels). This interface is useful for point-to-point communication at slow speeds. For example, port COM1 in a PC can be used for a mouse, port COM2 for a modem, etc. This is an example of point-to-point communication: one port, one device. Due to the way the signals are connected, a common ground is required. This implies limited cable length? About 30 to 60 meters maximum. (Main problems are interference and resistance of the cable.) Shortly, RS 232 was designed for communication of local devices, and supports one transmitter and one receiver.
RS422 & 485 uses a different principle: Each signal uses one twisted pair (TP) line-two wires twisted around themselves. We’re talking ‘Balanced data transmission’, or ‘Differential voltage transmission’. Simply, let’s label one of the TP wires ‘A’ and the other one ‘B’. Then, the signal is inactive when the voltage at A is negative and the voltage at B is positive. Otherwise, the signal is active, A is positive and B is negative. Of course, the difference between the wires A and B matters. For RS 422 & 485 the cable can be up to 1200 meters (4000 feet) long, and commonly available circuits work at 2.5 MB/s transfer rate.
What is the difference between RS 422 and RS 485? Electrical principle is the same both use differential transmitters with alternating voltages 0 and 5V. However, RS is intended for point-to-point communications, like RS 232. RS 422 is intended uses two separate TP wires, data can be transferred in both directions simultaneously. RS 422 is often used to extend a RS 232 line, or in industrial environments.
RS 485 is used for multiply-point communications: more devices may be connected to a single cable- similar to e.g ETHERNET networks, which use coaxial cable. Most RS 485 systems use Master/Slave architecture, where each slave unit has its unique address and responds only to packets addressed to this unit. These packets are generated by Master (e.g PC), which periodically polls all connected salve units.

Quick Comparison Chart: