Tuesday, September 22, 2015

RS-232 cable Wiring & Testing

COM Port (OR) RS-232 cable Wiring & Testing


As A technical background eSecurity Professional, many time got call “my Access Controller communication has RS232 enable How we connect with Computer (COM Port), is there any layout” Sometime “Successfully testing via my Laptop but Customer computer not responding, any distance or new programming is there”. I remember in year 2006 me also facing this type of problem with an Access Controller; I would be like to share the myth.

Com Port (Com1 / Com2 etc)= Serial Port = RS232 = Consol.

The wiring of RS232 has always been a problem. Originally the standard was defined for DTE (data terminal equipment) to DCE (data communication equipment connection), but soon people started to use the communication interface to connect two DTEs directly using null modem cables. No standard was defined for null modem connections with RS232 and not long after their introduction, several different wiring schemes became common. With Digital Equipment Corporation tried to define their own standard for serial interconnection of computer devices with modified modular jack connectors. This interfacing standard became available on most of their hardware, but it wasn't adopted by other computer manufacturers. Maybe because DEC used an non-standard version of the modular jack.


Very interesting is the RS232 to RJ45 wiring standard proposed by Dave Yost in 1987, based on earlier wiring schemes used at Berkeley University. He tried to define a standard comparable to DEC, where both DTEs and DCEs could be connected with one cable type. This standard was published in the Unix System Administration Handbook in 1994, and has since that moment been a wiring standard for many organizations. We will discuss this standard in detail here.
The RS-232 standard 9600bps port will drive 13 metres of shielded cable. RS232 standard is an asynchronous serial communication method. The word serial means, that the information is sent one bit at a time. Asynchronous tells us that the information is not sent in predefined time slots. RS232 sending of a data word can start on each moment. If starting at each moment is possible, this can pose some problems for the receiver to know which is the first bit to receive. To overcome this problem, each data word is started with an attention bit. This attention bit, also known as the start bit, is always identified by the space line level. Directly following the start bit, the data bits are sent. Data bits are sent with a predefined frequency, the baud rate. Both the transmitter and receiver must be programmed to use the same bit frequency. After the first bit is received, the receiver calculates at which moments the other data bits will be received. It will check the line voltage levels at those moments. With RS232, the line voltage level can have two states. The on state is also known as mark, the off state as space. No other line states are possible. When the line is idle, it is kept in the mark state. For error detecting purposes, it is possible to add an extra bit to the data word automatically. The transmitter calculates the value of the bit depending on the information sent. The receiver performs the same calculation and checks if the actual parity bit value corresponds to the calculated value. The stop bit identifying the end of a data frame can have different lengths. Actually, it is not a real bit but a minimum period of time the line must be idle (mark state) at the end of each word. On PC's this period can have three lengths: the time equal to 1, 1.5 or 2 bits. 1.5 bits is only used with data words of 5 bits length and 2 only for longer words. A stop bit length of 1 bit is possible for all data word sizes.
Goals of the Yost device wiring standard
The mess with RS232 wiring is widely known. It was the reason for starting this website. Dave Yost wanted to solve that mess once and for all, reaching as much as possible of the following goals:
  1. All cable connectors should have the same connector type (RJ45)
  2. All cable connectors should have the same connector gender (male)
  3. DTEs and DCEs should have the same connector wiring
  4. All cables should be identical (except for length)
  5. No need for null modems or other special cables for specific situations
These goals are very close to the goals DEC wanted to achieve. The Yost standard has however one basic advantage. Because RJ45 connectors are used, eight pins are available which makes it possible to transfer almost all RS232 signals. Therefore the Yost standard can be used with much more equipment.
Yost DTE adapter wiring
Now we know how the cables are wired, it is time to define the adapter wiring for various equipment. Depending of the type of equipment, DB9 or DB25 connectors are used. Layouts for both connectors to a RJ45 socket for DTE equipment is shown here. The colors are defined by the Yost standard. The DTR to DSR connection is optional. Please use the manual of the device or software to decide if this loop is necessary. It doesn't harm most of the time if you connect both lines, even with systems that don't use the DSR input signal.
Test COM port by using HyperTerminal.
The HyperTerminal application has been distributed with the Windows operating system versions for a long time now, and for administrators and technical support Representatives, it can be a very useful tool. HyperTerminal allows a user to make a connection to a "host" system from a Windows computer using an available COM port. This will enable you to verify whether or not a port is active and open.  If you have never looked at HyperTerminal, take a couple of minutes to read through the following and see how it can make your life easier.
The HyperTerminal application is started by default from the Start | Programs | Accessories | Communications | HyperTerminal location. When you start HyperTerminal, you are asked to name the connection you are about to configure. This is useful as once you have configured your connection, you can then save all the settings to a configuration file of the same name. This configuration file can be used to implement equivalent settings for subsequent connections. After selecting a connection name, click OK.
On the Connect To dialog box, you are introduced to the different types of connection that HyperTerminal offers. By default, a dial-up connection using a modem is selected (assuming you have a modem present). If you have installed an external modem in addition to an internal modem that modem should also be present in the drop down menu as a choice.
 If you click the downwards arrow on the Connect Using field, you may see one or more COMx (where x is the number of the COM port. i.e COM5) options depending on the number of serial ports available on your computer. The COMx options are typically used for attaching to something like a UNIX computer via serial cable or to a router via its serial console cable. 

To test a specific COM port select that COM port you wish to test. Once the COM port is selected you will not be able to access the other options on this dialog box. They will appear grayed out.

Click OK and select these options:
9600 Bits Per Second, 8 Data Bits, No Parity, 1 Stop Bit, and Hardware Flow Control.
Before clicking OK on the COM3 Properties Dialog Box look at the lower left corner of the HyperTerminal Window. Notice it says "Disconnected" See graphic Below.
Now click the OK button on the COM3 Properties Dialog box. Watch the lower left corner of the HyperTerminal Windows. If the COM port is available and can be opened you will see the status change to Connected. See graphic below.
 If you select OK and get an error saying "Unable to open COMx (where x is the COM port number). Please check your port settings". The COM port you are testing is being used by some device or is not functioning correctly.
Start at the beginning of the COM port test and test another available COM port.
If you receive the error we discussed on every port you select then there are no available ports and you will need to either troubleshoot further or speak to your hardware manufacturer and ask your manufacturer to recommend a hardware solution appropriate for your situations.

Test COM port by using Loopback tester
This is a simple and useful tool for testing RS-232 ports in DTE equipment are working working or not. This plug is connected so that every sent character is echoed back.
 If you Short DB9 (Com Port / RS232) Pin 2 & 3, & Press any Word via Keypad, you can get Eco of that Key. IF you got replied then your Com port is Working Normal, IF not then need to either troubleshoot further or speak to your hardware manufacturer and ask your manufacturer to recommend a hardware solution appropriate for your situations.

Differences between RS-232 and full-duplex RS-485

From a software point of view, full-duplex RS-485 looks very similar to RS-232. With 2 pairs of wires -- a dedicated "transmit" pair and a dedicated "receive" pair (similar to some Ethernet hardware), software can't tell the difference between RS-485 and RS-232.
From a hardware point of view, full-duplex RS-485 has some major advantages over RS-232 -- it can communicate over much longer distances at higher speeds.
Alas, a long 3-conductor cable intended for RS-232 cannot be switched to full-duplex RS-485, which requires 5 conductors.
RS-232 is only defined for point-to-point connections, so you need a separate cable for each sensor connected to a host CPU. RS-485 allows a host CPU to talk to a bunch of sensors all connected to the same cable.

Differences between RS-232 and half-duplex RS-485

But a lot of RS-485 hardware uses only 1 pair of wires (half-duplex). In that case, the major differences are
  • Each RS-485 node, including the host CPU, must "turn off the transmitter" when done transmitting a message, to allow other devices their turn using the shared medium
  • The RS-485 hardware generally receives on the receiver every byte that was transmitted by every device on the shared medium, including the local transmitter. So software should ignore messages sent by itself.
A long 3-conductor cable intended for RS-232 can often be switched to half-duplex RS-485, allowing communication at higher speeds and at higher external noise levels than the same cable used with RS-232 signaling.
RS-232 is only defined for point-to-point connections, so you need a separate cable for each sensor connected to a host CPU. RS-485 allows a host CPU to talk to a bunch of sensors all connected to the same cable.
Alas, half-duplex RS-485 networks are often more difficult to debug when things go wrong than RS-232 networks, because
  • When a "bad message" shows up on the cable, it is more difficult (but not impossible) to figure out which node(s) transmitted that message when you have a shared-medium with a dozen nodes connected to the same single cable, compared to a point-to-point medium with only 2 nodes connected to any particular cable.
  • Transmitting data bidirectionally over the same wire(s), rather than unidirectional transmission, requires a turn-around delay. The turn-around delay should be proportional to the baud rate -- too much or too little turn-around delay may cause timing problems that are difficult to debug.

Differences between RS-232 and both kinds of RS-485

RS-485 signal levels are typically 0 to +5 V relative to the signal ground.
RS-232 signal levels are typically -12 V to +12 V relative to the signal ground.
RS-232 uses point-to-point unidirectional signal wires: There are only two devices connected to a RS-232 cable. The TX output of a first device connected to the RX input of a second device, and the TX output of the second device connected to the RX input of the first device. In a RS-232 cable, data always flows in only one direction on any particular wire, from TX to RX.
RS-485 typically uses a linear network with bidirectional signal wires: There are typically many devices along a RS-485 shared cable. The "A" output of each device is connected to the "A" output of every other device. In a RS-485 cable, data typically flows in both directions along any particular wire, sometimes from the "A" of the first device to the "A" of the second device, and at a later time from the "A" of the second device to the "A" of the first device.

Friday, September 18, 2015

Point To Point Communication for IP Camera

Point To Point with Nano Tp-LocoM5

Many Installers are requesting methods to connect their Security Systems. From running cable race ways in commercial buildings to installing conduit above or below ground in residential installations, running wired connections can take a lot of time – which equals more money to spend in labor. This article can serve as a guide on how to maximize the use of our Nano Station Loco M5. In this article we will be going to be utilizing an IP Megapixel system.

Example: IP camera System
Items Needed:-
TP-Loco M5
Any IP camera
Any NVR
Category 5, 5e or 6 Cable / Patch Cables
PoE Switch

Before installing any hardware we first need to configure the Nanos. Lets start by Configuring the Nano that will act as an Access Point. This is the one that will be located at the Main Network.
Nano (Access Point)
Navigate to http://192.168.1.20 on your web browser. If you get this page . Click on “Continue to this website (not recommended)”
This is the correct page you should see displayed on your browser. Once you are here you can log in using UBNT as Username and Password.
Select your Country and agree to the terms of use by ticking the radio button.
Once you have gained access to the Main GUI, navigate to the Wireless Tab
Match the Settings displayed.
Wireless Mode: Access point
WDS : Enabled
SSID: UBNT_Bridge
Security : WPA2-AES
Preshared KEY: UBNT2014
Hit Change but not apply.
Network Mode: Bridge
Static Ip: 192.168.1.159
Match your Gateway as well as the DNS server. In this example we left this out as many networks are different.
Finally hit apply.
Once you have applied the settings your Nano will restart and you can install the Access Point at the Main location where the Main network is.
Nano (Station)
Lets go ahead and open an internet browser.
Navigate to http://192.168.1.20
Use the following credentials to log in.
Username: UBNT Password: UBNT
Select your Country & Language
Check the radio button to Agree the terms of use as.
Once you are loge in navigate to the Network Tab
Use the Following settings
Wireless Mode: Station
WDS : Enabled
SSID: UBNT_Bridge
Security : WPA2-AES
Preshared KEY: UBNT2014
Navigate to Network
Use the Following settings
Network Mode: Bridge
Static Ip: 192.168.1.160
Match your Gateway as well as the DNS server in this example we left this out as many networks are different.
Navigate to the Ubiquity tab
Make sure to match these settings and hit apply.
Once you have completed both Nanos you can install them making sure that they both have line of sight between the devices, some minor adjustments can be done to ensure a good connection.
The Nano’s will lock onto the network by themselves or you can click on the SELECT button this will open up a tab that will display any Access Points in the area select the correct one and lock onto it.
Once you have completed setting up your Point to Point Bridge we can focus on the location.
In this illustration you can see that the Nano (Access Point) is in line of sight with the Nano (Station) that has an IP camera connected to it.
The Connections are simple

Site Side
1.        Connect the camera that you need to add into your Main network onto its own PoE Switch “POE Port”
2.        Attach the “LAN” Cable on the single port PoE switch to the “LAN” on the PoE switch from the Nano (Site)
3.        Attach the “PoE” Cable to the Nano Station “LAN” port.
Main Side
1.        Connect the Nano Station to its PoE switch  (“LAN” to “PoE”)
2. Attach an Ethernet cable from your Router LAN port to the “LAN” port located on the Nano stations PoE switch.

*NVR connections are simple simply attach your NVR to the Router  by attaching a cable in between the LAN port on the NVR to the LAN port of your router.

Mounting Options:
The Nanos come already designed to be attached to a pole, there is a supplied Nylon Zip Ties.

Troubleshooting Tips:
If you have successfully connected all of the devices and you cannot seem to ping your camera on any device on the Station side, make sure that the WDS is enabled in both the AP and Station.
If signal is poor you can use the AirView Application to check your signals. If you are not that tech savvy you can use the Signal bars behind the units or simply log in to both and tweak your nano’s position.
Once you have completed mounting your camera and Nano stations as well as configuring your Nano’s, your system should be up and running.
Also, to view your cameras outside your network, some port forwarding is needed. Ports that need to be opened are 37777,37778 and HTTP ports.

Friday, September 4, 2015

About PSIM

What is PSIM?

PSIM stands for Physical Security Information Management, however it certainly requires further explanation about why it is important. Firstly, the future of all security systems is IP based, this means that CCTV, Access Control, Intruder and Fire Alarms will be computer based. Analogue and standalone systems are becoming more redundant and technology is moving rapidly towards converging all these IP based systems onto a single software management platform.
Assuming your security systems are IP based, then PSIM software packages will make an incredible difference to way you secure your school, business or public sector space. This means facility or building management staff can centralise all systems onto a single platform and remotely manage the building.
The key attributes of a PSIM system are:
1. Collection: Device management independent software collects data from any number of disparate security devices or systems
2. Analysis: The system analyses and correlates the data, events, and alarms, to identify the real situations and their priority
3. Verification: PSIM software presents the relevant situation information in a quick and easily-digestible format for an operator to verify the situation
4. Resolution: The system provides Standard Operating Procedures (SOPs), step-by-step instructions based on best practices and an organisation’s policies, and tools to resolve the situation
5. Reporting: The PSIM software tracks all the information and steps for compliance reporting, training and potentially, in-depth investigative analysis
6. Audit trail: The PSIM also monitors how each operator interacts with the system, tracks any manual changes to security systems and calculates reaction times for each event
PSIM is considered essential for Control Rooms or Command and Control Operations, as the software, provided all the systems are IP based, converge all the disparate systems onto a single platform to provide full management. Common security systems integrated onto a PSIM platform are:

- IP Access control systems
- IP CCTV systems
- Fire detection
- Video wall
- Intrusion detection systems
- Perimeter Intrusion detection systems
- Radar based detections
- GIS mapping systems
- Intercom or IP Phone systems
- Automated barriers & bollards
- Building management systems


The aggregated data, information and footage from the various systems provides the operator with intelligence to effectively manage situations (i.e fires, intruders etc) or day to day management of the building (i.e remote door locking etc). Ultimately, this means the need for large teams of facility staff can be reduce and the building managed centrally by key operators. A key reason for the development of PSIM has been the technology improvements of the systems listed above, which has meant software developers have been able to integrate and converge these systems onto single platforms. Technology in security systems is improving dramatically, prices are falling for systems and the software required to manage them is now available. It really makes sense to move forward and use PSIM to its full potential, let Sunstone help you embrace the future.

Sunday, August 16, 2015

iPhone and iPad Security Camera Apps

iPhone and iPad Security Camera Apps
As a well-known eSecurity Professional in India I got many appreciation call/mail for my Blog writing. Thanks to all of you for read and understand my wrong English writing on my blog. Recently I visit Bhubaneswar (Located in India, Capital of Orissa) and face some question, customer ask you people highlight our NVR/ DVR is support Remote viewing on iPhone & iPad, but we are not enjoy the benefits of mobile security camera monitoring. Our System Integrator / Installer technical person come and say something that we are not understands. So you’ve come to the right place. Many IP camera and NVR manufacturers have unveiled top-of-the-line mobile monitoring apps compatible with the iPhone and iPad. A list of manufacturer iPhone security camera apps and iPad security camera apps is provided below, each with a detailed description of noteworthy features.

Optica
iPhone & IPad Security Camera App Name: OpticaMobile & OpticaMobile HD
Optica, a leading manufacturer of high-definition IP cameras, offers OpticaMobile and OpticaMobile HD mobile apps designed for iPhone, iPad, and Android devices. OpticaMobile delivers a wide spectrum of features to improve the viewing experience for all Optica IP cameras, including quad-view mode, live video streams, bookmarking, audio, snapshots, dual stream support, and PTZ control of Optica’s P218Z speed dome. It’s an easy and convenient way to tap into your Optica IP camera system while on the go. OpticaMobile HD is built for use on the iPad, while OpticaMobile is compatible with iPhone and Android devices.

Milestone
iPhone & IPad Security Camera App Name: XProtect Mobile
Milestone is one of the leading providers of video management software. Always on the forefront of IP video technology, Milestone offers an iPhone security camera app designed for use with the iPhone 3GS, iPhone 4, iPhone 4S, iPhone 5, iPhone 6, and iPad. To use the iPhone and iPad app, you must first have Milestone’s free XProtect Mobile Server installed and configured, which you can download from the Milestone website. Once installed on your iPhone, you can view live video from several cameras simultaneously; play back recorded images; control PTZ cameras; connect to cameras from more than one site; and send images to others via MMS and email. It’s by far one of the best mobile monitoring apps out there.

Smartvue
iPhone & IPad Security Camera App Name: Smartvue 9
An all-star player in the NVR market, Smartvue offers a complimentary iPhone and iPad monitoring app compatible with a wide range of IP camera brands and styles such as Axis, Sony, Optica, Vivotek, and Panasonic. This innovative app allows you to view numerous cameras at once, slide through live images, connect to different cameras, change display options, see off-site camera monitors, view recorded video, and search archived footage. It’s easy to use, has an intuitive design, and operates through simple touch screen functions such as scrolling and pinch-to-zoom.

Vivotek
iPhone & IPad Security Camera App Name: Vivotek iViewer
The iViewer iPhone security camera app created by Vivotek is compatible with the iPhone 3GS, iPhone 4, iPhone 5, iPhone 6 and iPad devices. With the iViewer app installed on your iPhone or iPad, you can view your live camera feed anytime, anywhere. You’re not limited to just one camera either; the iViewer supports hundreds of live camera feeds from innumerable server connections. The app gives you complete control of your live video, including PTZ camera control, a snapshot command to capture specific video frames, real-time switching of cameras to change displays as needed, and saving your display settings. The app also features remote playback so you can browse through recorded images for peace of mind. Additionally, you can search recorded video via a date and time, and playback recorded video in time intervals of 1, 2, 5, and 10 minutes.

QNAP
iPhone & IPad Security Camera App Name: VMobile
NVR manufacturer QNAP offers a free mobile monitoring app called VMobile that works with most versions of the iPhone as well as the iPad. Using the VMobile app, you can view your IP cameras and playback recorded video from the VioStor NVR series. Unique to the VMobile app is its ability to connect with hundreds of network cameras of varied brands. You’ll have access to breakthrough mobile monitoring features like PTZ control, notification of events and snapshots, adjustable viewing modes, and recorded video playback.

Everfocus
iPhone & IPad Security Camera App Name: MobileFocus
Everfocus is one of the world’s most trusted manufacturers of CCTV camera systems and DVRs. The MobileFocus app supports multi-touch control for zooming in on images, quick access to preset positions, sequence mode, image snapshots of real-time video, PTZ control, full screen displays, live audio, and device management, among many other convenient features. The app currently works with all Paragon Series DVRs and HD Series DVRs.

Backup and Archiving

Backup and Archiving

Backup and archiving are always mentioned together, as both of these technologies support primary data storage. However, the commonalities end over here and cannot be carried forward. But in enterprise IT world it is often observed that archive is analogous to backup.
Simply put, backup and archive are not the same and here’s why explained in simple terms-

Data Backup

Data backup is intended to recover individual lost or corrupt files, or individually corrupt operating system instances. The backed up data has both active and inactive information which encompasses all of your production data. This backup set is useful for purposes of recovery in case of the original copy of data is lost or becomes inaccessible due to reasons. It is always critical that a backup is a copy of production data and the actual data still resides on the production storage systems.
Backups are historically being optimized for large scale recoveries. They are written in large blocks to dedicated hardware like tape libraries or deduplicated disk backup appliances.
On a typical note, these backups are scheduled, often every 24 hours, sometimes more frequently, even hourly with some continuous data protection solutions. The data driven by a backup is stored on a tape or a disk solution or off site like a cloud platform. Restoration from backup can be a complex and lengthy process depending on the volume of data to be restored.

Data archiving

Data archiving on the other hand, is data meant for long term retention, typically for compliance purposes in regulated industries such as finance and legal sectors. These are actually designed with very different access profiles. These systems typically store individual data objects such as files, databases or email messages and usually also capture metadata associated with each item.  The result is that an archive can provide immediate granular access to stored information and so accessing an individual file or email is typically very easy in an archive system.
Generally, archiving solutions which retain and index all copies and versions of a document, file, or email, making them easily are expected to be rapidly retrievable by end users rather than IT admins.

So, please do not treat your backups as archives or vice versa as same, as they serve for different purposes.

Friday, August 14, 2015

Installation of Camera In Harsh Environment

In this article, our aim to provide you some basic information about same standard which determine the outdoor working reliability. Outdoor Security cameras must be able to continue working properly. To achieve this, the security cameras must can effectively withstand in harsh conditions - such as rain, dust, wind, sand, salt, extreme hot and cold temperature etc. Many factors determine the camera whether they are suitable for specific outdoor critical environments.

1.       WEATHERPROOF STANDARD - INGRESS PROTECTION (IP)
To let user know whether certain products are suitable for certain conditions, some international organizations set standards that can indicate how effectively product can work in environment prone to water, dust, explosion and impact. Ingress protection is the most widely used one standard.


IP stands for ingress protection which is a standard (IEC-529) that specify how caable equipment can withstand the ingress, or entry, of dust or water. An IP is usually consisted of two numerals, the first digital indicates the level of protection that the enclosure provides against access to hazardous parts (e.g. electrical conductors, moving parts) and the ingress of solid foreign objects, the second digital indicates the protection of the equipment inside the enclosure against harmful ingress of water. For harsh environment, the security camera should be rated IP66 to IP68 as opposed to IP32 to IP54 for indoor environment.

2.       IMPACT PROTECTION - IK RATING
IK or impact protection, is the standard that specify degrees of protection provided by enclosures for electrical equipment against external mechanical impacts in accordance with IEC 62262:2002 and IEC 60068-2-75:1997. IK rating system ranges from IK00, or no protection, to IK10, or protection against 20 joules impact, equivalent to impact of 5kg mass dropped from 400 mm above impacted surface. Typically, vandal-proof security cameras utilizes high impact polycarbonate plastic dome. Tamper-resistant screws make the unit resistant to vandalism.

3.       SURGE PROTECTION
The majority of all surge-induced damage is caused by surges and spikes travelling along unprotected video, data, and power lines. These surges originally come from a wide variety of sources, including lightning strikes and static charge buildup. Surge protection can provide protection for both IP video surveillance and analog video surveillance systems which include front-end cameras, data lines, power lines, back-end storage DVR, NVR, as well as PoE switches. When security cameras are installed outdoor, extra surge protection is essential, surge protection is a smart investment in preventing not only equipment loss, but the potential loss of critical information.

4.       EXTREME LOW/HIGH TEMPERATURE
Users also need to consider the temperature factor if the camera is installed in extreme hot or low temperature degrees environment, the security cameras should be able to withstand these conditions. While typical security camera ought to have a working temperature range from -10 to 60 degrees Celsius, critical environment products should be able to work in a range between -40 and 70 degrees Celsius. Some IP cameras has built-in heater and fan to maintain the camera's inner temperature therefore allows camera to work in an extreme high/low environments.

5.       OTHER CUTTING-EDGE TECHNOLOGIES
Many other new technologies which has been implemented into security camera to enable them work in places that subject to danger or extreme weather conditions. Pelco by Scheider Electric released a series of products that have capability to withstand water and dust ingress, fog, high and low temperatures, winds of up to 57 meters per second, explosions, and corrosion by salt and different types of chemicals.

Many different technologies have been utilized to make those features possible. For example, some products feature the pressurized integrated optics cartridge (IOC) technology, which is able to protect the equipment from moisture and airborne contaminants and packages an auto-focus camera, lens, heater, and sensors in a small, self-contained, and sealed unit. Another cutting-edge technology is Dry nitrogen pressurized to 10 pounds per square inch gauge (PSIG), which protects the environment inside the cartridge, whereby sensors strategically placed in the cartridge send an alert message if changes in pressure, humidity, or temperature are beyond factory-set threshold points.

Some security cameras also feature heater, window defroster, sun shroud, and thermal insulation blanket to enable operation in temperature conditions ranging from as low as -46 degrees Celsius to over 49. In case the power failure during an ice store, the entire camera can deice itself and become operational in just two hours after power restore at a temperature as as -25 degrees Celsius.

Monday, July 20, 2015

Design of CCTV System

CCTV system design
Designing a CCTV system is a complex task, requiring at least basic knowledge of all the stages in a system, as well as its components. But more importantly, prior to designing the system, we need to know what the customer expects from it.

Understanding the customer’s requirements
The first and most important preparation before commencing the design is to know and understand the customer’s requirements. Customers can be technically oriented people, and many understand CCTV as well as you do, but most often they are not aware of the latest technical developments and capabilities of each component.
The most important thing to understand is the general concept of the surveillance the customer wants, Constant monitoring of cameras and activities undertaken by 24-hour security personnel, or perhaps just an unattended operation (usually with constant recording), or maybe a mixture of the two. Once you understand their general requirements, it might be a good idea to explain to them what is achievable with the equipment you would be suggesting. This is reasonably easy to accomplish with smaller and simpler systems, but once they grow to a size of more than 10 cameras some of which could be PTZs, a few monitors, more than one control point, a number of alarms, VCRs, and the like, things will get tougher.

Many unknown variables need to be considered: What happens if a number of alarms go off simultaneously? Which monitor should display the alarms? Will the alarms be recorded if the DVR/VCR(s) is/are playing back? What is the level of priority for each operator? And so on.

Those are the variables that define the system complexity and as in mathematics, in order to solve a system with more variables, one needs to know more parameters. They can be specified by the customer, but only after the customer has understood the technical capabilities of the equipment.

Understandably, it is imperative for you, as a CCTV expert, to know the components, hardware, and software you would be offering and to achieve what is required in the best possible way. You can create a favorable impression in the customer’s mind if at the end you give him or her as much as, or even more than, what you have promised. You will prove unsatisfactory if you do not. Remember that if the customer is fully satisfied the first time, chances are he or she will come back to do business with you again. To put it simply: Do not claim the system will do this and that if you are not certain; make sure your system delivers what you say it will.

So, to design a good, functional system, one has to know the components used, their benefits and limitations, how they interconnect, and how the customer wants them to be used. The first few parts are assumed to be fulfilled, since you would not be doing that job unless you knew a few things about CCTV. The last one – what the customer wants – can be determined during the first phone call or meeting.

Usually, the next step is to conduct a site inspection. Here is a short list of questions you should ask your customer prior to designing the system and before or during the site inspection:

• What is the main purpose of the CCTV system?
If it is a deterrent, you need to plan for cameras and monitors that will be displayed to the public.
If it is a concealed surveillance, you will need to pay special attention to the camera type and size, its protection, concealed cabling, and the like, as well as when it is supposed to be installed (after hours perhaps).

• Who will be the operator(s) ?
If a dedicated 24 hour guard is going to use the system, the alarm response needs to be different from that expected when unattended, or a partially attended, system operation.

• Will it be a monochrome or color system ?
The answer to this question will dictate the price, as well as the minimum illumination response.
Consequently, the lighting in the area needs to be looked at. A color picture will give more details about the observed events, but if the intention is to see images in very low light levels, or with infrared lights, there is no other alternative but B/W cameras (unless the customer is prepared to pay for some of the new cameras available on the market that switch between color and monochrome operation).
The price of a color system is dictated not only by the cameras, but also by the monitors, multiplexers, and/or quads (if any). Needless to say, sequential or matrix switchers, as well as time-lapse VCRs, are the same for both B/W and color.

• How many cameras are to be used ?
A small system with up to half a dozen cameras can be easily handled by a switcher or multiplexer, but bigger systems usually need a matrix switcher or a larger number of switchers and multiplexers.

• How many of the cameras will be fixed focal length and how many PTZ ?
There is a big difference in price between the two because if a PTZ camera is used instead of a fixed one, the extra cost is in the zoom lens (as opposed to the fixed one), the pan and tilt head or dome, the site driver, and the control keyboard to control it. But the advantages your customer will get having a PTZ camera will be quadrupled. If on top of this, preset positioning PTZ cameras are used, the system flexibility and efficiency will be too great to be compared with the fixed camera system. A system with only one PTZ camera and half a dozen fixed ones is a choice that may require a matrix switcher for control and will increase the price dramatically (compared to a system with only fixed cameras). Alternatively, single PTZ camera control can be achieved via a special single-camera digital or hard-wired controller, but they would also increase the price considerably. So, if a PTZ camera is required, it would be more economical to have more than one PTZ camera.

• How many monitors and control keyboards are required?
If it is a small system, one monitor and keyboard is the logical proposal, but once you get more operators and/or channels to control and view simultaneously, it becomes harder to plan a practical and efficient system. Then, an inspection of the control room is necessary in order to plan the equipment layout and interconnection.

• Will the system be used for live monitoring (which will require an instant response to alarms), or perhaps recording of the signals for later review and verification ?
This question will define whether you need to use DVR/VCR(s) with multiplexer(s). If you have a matrix switcher, you will still need a multiplexer or two in addition. Have in mind that the time lapse mode you are going to use depends on how often the tapes can be changed, and this defines the update rate of each camera recorded. Choose, whenever possible, a pair of 9-way (or 8-way) multiplexers instead of one 16-way, if you want to minimize the time delay in the recording rate update.

• What transmission media can be used on the premises ?
Usually, a coaxial cable is taken as an unwritten rule and installation should be planned accordingly. Sometimes, however, there is no choice but to use a wireless microwave or even a fiber optics transmission, which will add considerably to the total price. If the premises are subject to regular
lightning activity, you had better propose fiber optics from the beginning and explain to the customer the savings in the long run. So, you have to find out more about the environment in which the system is going, what is physically possible and what is not, and then plan an adequate video and data transmission media.

• Lastly and probably the most important thing to find out, if possible, is what sort of budget is planned for such a CCTV system?
This question will define and clarify some of the previous queries and will force you to narrow down either the type of equipment, the number of cameras, or how the system is expected to work. Although this is one of the most important factors, it should not force you to downgrade the system to something that you know will not operate satisfactorily.
If the budget cannot allow for the desired system, it is still good to go back to the customer with a system proposal that you are convinced will work as per his or her requirements (even if it is over budget) and another one designed within the budget with as many features as the budget will allow for. This will usually force you to narrow down the number of cameras, or change some from PTZ to fixed. The strongest argument you should put forward when suggesting your design is that a CCTV system should be a secure one, which can only be the case if it is done properly. Thus, by having a well-designed system, bigger savings will be made in the long run.

By presenting a fair and detailed explanation of how you think the system should work, the customer will usually accept the proposal.

Site inspections
After the initial conversation with the customer and assuming you have a reasonably good idea of what is desired, you have to make a site inspection where you would usually collect the following information:
• Cameras: type (i.e., B/W or color, fixed or PTZ, Resolution, etc.).
• Lenses: angles of view, zoom magnification ratio for zoom lenses (12.5–75 mm, 8–80 mm, etc.).
• Camera protection: housing type (standard, weatherproof, dome, discrete, etc.) mounting.
• Light: levels, light sources in use (especially when color cameras are to be used), east/west viewing direction. Visualize the sun’s position during various days of the year, both summer and winter. This will be very important for overall picture quality.
• Video receiving equipment: location, control room area, physical space, and the console.
• Monitors: Resolution, size, position, mounting, and the like.
• Power supply: type, size (always consider more amperes than what are required). Is there a need for an uninterruptable power supply (UPS)? (VA rating in that case).
• If pan/tilt heads are to be used: type, size, load rating, control (two wire – digital or multi-core). Is there a need for preset positioning (highly recommended for bigger systems)? Where are they going to be mounted? What type of brackets ?
• Make a rough sketch of the area, with the approximate initial suggestions for the camera positions. Take into account, as much as possible, the installer’s point of view. A small change in the camera’s position, which will not affect the camera’s customer. An unwritten golden rule for a good picture is to try and keep the camera from directly facing light.
• Put down the reference names of areas where the customer wants (or where you have suggested) the cameras to be installed. Also write down the reference names of areas to be monitored because you will need them in your documentation as reference points. Be alert for obvious “no-nos” (in respect to installation), even if the customer wishes something to be done. Sometimes small changes may result in high installation costs or technical difficulties that would be impossible to solve. It is always easier to deter the customer from making changes by explaining why in the initial stage, rather than having to do so later in the course of installation, when additional costs will be unavoidable.
To know more just read Condensed Code BS EN 62676-4 and BS EN 50132-7, BS EN 62676-4 Clause 4.4 & BS EN 62676-4 Clause 4.5.

Designing and quoting a CCTV system
With all of the above information, as well as the product knowledge (which needs constant updating), you need to sit down and think.

Designing a system, like designing anything new, is a form of art. As is true of many artists, your work may not be rewarded immediately, or it may not be accepted for some reason. But think positively and concentrate as if that is to be the best system you can propose. With a little bit of luck you may make it the best, and tomorrow you can proudly show it to your colleagues and customers. Different people will use different methods when designing a system. There is, however, an easy and logical beginning.

Always start with a hand drawing of what you think the system should feature. Draw the monitors, cameras, housings, interconnecting cables, power supplies, and so on. While drawing you will see the physical interconnection and component requirements. Then you will not omit any of the little things
that can sometimes be forgotten, such as camera brackets, types of cable used, and cable length. Making even a rough hand sketch will bring you to some corrections, improvements, or perhaps further inquiries to the customer. You may, for example, have forgotten to check what the maximum distance for the PTZ control is, or how far the operators are to be from the central video processing equipment, power cable distances, voltage drops, and so on.

Once you have made the final hand drawing, you will know what equipment is required, and it is at this point that you can make a listing of the proposed equipment. Then, perhaps, you will come to
the stage of matching camera/lens combinations. Make sure that they will fit in the housings or domes you intend to use. This is another chance to glance through the supplier’s specifications booklet. Do not forget to take into account some trivial things that may make installation difficult, like the coaxial cable space behind the camera (remember, it is always good to have at least 50 mm for BNC terminations), the focusing movement of a zoom lens (as mentioned earlier in the chapter on zoom lenses, in a lot of zoom lenses focusing near makes the front optical element protrude for an additional couple of millimeters), and so on.


The next stage is pricing the equipment – costs, sales tax and duty, installation costs, profit margins and the most important of all (especially for the customer) the total price.

Do not forget to include commissioning costs in there, although a lot of people break that up and show the commissioning figure separately. This is more of a practical matter, since the commissioning cost may vary considerably and it could take longer or shorter than planned. General practical experience shows that it will always take at least three times longer than planned. Also, in the commissioning fees, time should be allocated for the CCTV operator’s training.

After this step has been completed, you need to make a final and more accurate drawing of the system you are proposing. This can be hand drawn, but most CCTV designers these days use computers and CAD programs. It is easier and quicker (once you get used to it), and it looks better.
Also, the hand-calculated price needs to be written in a quotation form, with a basic explanation of how the system will work and what it will achieve. It is important for this to be written in a concise and simple, yet precise form, because quotations and proposals (besides being read by security managers and technical people) are also read by nontechnical people such as purchasing officers and accountants.

Often, spreadsheet programs are used for the purpose of precise calculation, and this is another chance to double-check the equipment listing with your drawing and make sure nothing has been left out. As with any quotation, it is more professional to have a set of brochures enclosed for the components you are proposing.

In the quotation, you should not forget to include your company’s terms and conditions of sale which will protect your legal position.

If the quotation is a response to a tender invitation, you will most likely need to submit a statement of compliance.

This is where you confirm whether your equipment complies or does not comply with the tender requirements. This is where you also have to highlight eventual extra benefits and features your equipment offers. In the tender, you may also be asked to commit yourself to the progress of the work and supply work insurance cover, in which case you will need a little bit of help from your accountant and/or legal advisor.


Many specialized companies only design and supply CCTV equipment, in which case you will need to get a quote from a specialized installer, who, understandably, will need to inspect the site. It is a good practice, at the end, to have all the text, drawings, and brochures bound in a single document, in a few copies, so as to be practical and efficient for reviewing and discussions.

Installation considerations
If you are a CCTV system designer, you do not have to worry about how certain cables will be pulled through a ceiling, raisers, or camera pole mounting; that is the installer’s job. But it would be very helpful and will save a lot of money, if you have some knowledge in that area. If nothing else, it is a good practice, before you prepare the final quotation, to take your preferred installer on site, so that you can take into account his or her comments and suggestions of how the practical installation should be carried out.

First, the most important thing to consider is the type of cable to be used for video, power, and data transmission, their distances and protection from mechanical damage, electromagnetic radiation, ultraviolet protection, rain, salty air, and the like. For this purpose it is handy to know the surrounding area, especially if you have powerful electrical machinery next door, which consumes a lot of current and could possibly affect the video and control signals. Powerful electric motors that start and stop often may produce a very strong electromagnetic field and may even affect the phase stability of the mains. This in turn will affect the camera synchronization (if line-locked cameras are used) as well as the monitor’s picture display.

For example, there might be a radio antenna installed in the vicinity, whose radiation harmonics may influence the highfrequency signals your CCTV system uses.
Mounting considerations are also important at both the camera and monitor end. If poles are to be installed, not only the height, but also the elasticity of the poles is important. Steel poles, for example, are much more elastic than concrete poles. If a PTZ camera is installed, the zoom lens magnification factor will also magnify the pole’s movement which could result from wind, or vibrations from the pan/tilt head movement itself. This magnification factor is the same as the optical magnification (i.e., a zoom lens, when fully zoomed in, may magnify a 1mm movement of the camera due to wind to a 1 m variation at the object plane).
The shape of the pole is also very important
– hexagonal poles are less elastic than round ones of the same height and diameter.
The same logic applies to camera and pan/tilt head mounting brackets. A very cheap bracket of a bad design can cause an unstable and oscillating picture from even the best camera.
If the system needs to be installed in a prestigious hotel or shopping center, the aesthetics are an additional factor to determine the type of brackets and mounting. It is especially important then not to have any cables hanging.

The monitoring end demands attention to all aspects. It needs to be durable (people will be working with the equipment day and night), or aesthetical (it should look good) and practical (easy to see pictures, without getting tired of too much noise and flashing screens).
Since all of the cables used in a system wind up at the monitoring end and in most cases this is the same room where the equipment is located, special attention needs to be paid to cable arrangement and protection.

Often, cables lying around on the floor for a few days (during the installation) are subject to people walking on them, which is enough weight to damage the cable characteristics, especially the coaxial cable impedance. Remember, the impedance depends on the physical relation between the center core, the insulation, and the shield. If a bigger system is in question, it is always a better idea to propose a raised floor, where all the cables are installed freely below the raised floor.
Sometimes, if a raised floor is not possible, many cables can be run over a false ceiling. In such cases special care should be taken to secure the cables as they could become very heavy when bundled together.

Larger installations may want a patch panel for the video signals.
This is usually housed in a 19'' rack cabinet, and its purpose is to break the cables with special coax link connectors so as to be able to reroute them in case of a problem or testing.
Many installers fail to get into the habit of marking the cables properly. Most of them would know all of the cables at the time of installation, but two days later they can easily forget them. Cable marking is especially critical with larger and more complex systems. Insist on proper and permanent cable markings as per your drawings. There are plenty of special cable-marking systems on the market. In addition, listing of all the numbers used on the cables should be prepared and added to the system drawings.

Remember, good installers differ from bad ones in the way they terminate, run, arrange, and mark the cables, as well as how they document their work.

Drawings
There is no standard for drawing CCTV system block diagrams, as there is in electronics or architecture. Any clear drawing should be acceptable as long as you have clearly shown the equipment used (i.e., cameras, monitors, VCRs) and their interconnection.
Many people use technical drawing aids, such as CAD programs, or other PC or Mac-based drawing packages. Depending on the system size, it might be necessary to have two different types of drawings: one of a CCTV block diagram showing the CCTV components’ interconnection and cabling requirements, while the other could be a site layout with the camera positions and coverage area. In smaller installations, just a block diagram may be sufficient.
The CCTV block diagram needs to show the system in its completeness, how the components are interconnected, which part goes where, what type of cable is used, and where it is used.
If the site layout drawing is well prepared, it can later be used as a reference by the installer, as well as by your customer and yourself when reviewing camera locations, reference names, and discussing eventual changes.
When the CCTV system is installed and the job is finished, drawings may need small alterations, depending on the changes made during the installation. After the installation, the drawings are usually enclosed with the final documentation, which should also include manuals, brochures, and other relevant documentation.


Commissioning
Commissioning is the last and most important procedure in a CCTV system design before handing it over to the customer. It involves great knowledge and understanding of both the customer’s requirements and the system’s possibilities. Quite often, CCTV equipment programming and setup are also part of this. It includes video matrix switcher programming, time-lapse VCR programming, camera setup, and so on.
Commissioning is usually conducted in close cooperation with the customer’s system manager and/or operator(s), since a lot of settings and details are made to suit their work environment.
The following is a typical list of what is usually checked when commissioning:
All wiring is correctly terminated.
Supply voltage is correct to all appropriate parts of the system.
Camera type and lens fitted are correct for each position.
Operation of auto irises under various light levels is satisfactory.
If VCRs are fitted, they should be recording in the most efficient time-lapse mode (especially when multiplexed cameras are being recorded).
If DVRs are installed, the pictures per second performance and image quality (compression setting) should be checked .
All system controls are properly functioning (pan/tilt, zoom, focus, etc.)
The setting of all pan and tilt limits is correct.
Preset positioning, if such cameras are used, is correct.
The level of supplementary lighting is satisfactory.
The system must continue to work when the main supply is disconnected, and a check should be made as to how long it does (if UPS is used).
Commissioning larger systems may take a bit longer than the smaller ones. This is an evolution from the system on paper to the real thing, where a lot of small and unplanned things may come up because of new variations in the system concept. Customers, or users, can suggest the way they want things to be done, only when they see the initial system appearance. Commissioning in such cases may therefore take up to a few days.
Commissioning under  BS EN 62676-4 Clause 4.6 & BS EN 62676-4 Clause 13.

Training and manuals
After the initial setup, programming, and commissioning are finished, the operators, or system users, will need some form of training.
For smaller systems this is fairly straightforward and simple. Just a verbal explanation may be sufficient, although every customer deserves a written user’s manual. This can be as simple as a laminated sheet of paper with clearly written instructions.

Every piece of equipment should come with its own User’s Manual, be it a time lapse VCR, a camera, or a switcher, but they have to be put together in a system with all their interconnections and this is what has to be shown to the customer. Every detail should be covered, especially alarm response and the system’s handling in such cases. This is perhaps the most important piece of information to the operators.

For larger systems, it is a good idea to bind all the component manuals, together with the system drawings, wiring details, and operator’s instructions, in a separate folder or a binder. Naturally, for systems of a larger size, training can be a more complex task. It may even require some special presentation with slides and drawings so as to cover all the major aspects.

Good systems are recognized not only by their functionality but also by their documentation.

Handing over
When all is finished and the customer is comfortable with what he or she is getting, it is time to hand over the system. This is an official acceptance of the system as demonstrated and is usually backed by the signing of appropriate documents.
It is at this point in time that the job can be considered finished and the warranty begins to be effective.
From now on, the customer takes over responsibility for the system’s integrity and operation.
If customers are happy with the job, they usually write an official note of thanks. This may be used later, together with your other similar letters, as a reference for future customers.
Documentation consider BS EN 62676-4 Clause 4.8, BS EN 62676-4 Clause 15.3 & BS EN 62676-4 Clause 16.

Preventative maintenance
Effective and regular maintenance of a CCTV surveillance system is essential to ensure that the system remains reliable at all times. It is advisable that maintenance of the CCTV system should be carried out by the company which installed the system. However, the maintenance company should have the means, including necessary spare parts and documentation, to meet the recommendations given here.
Note: This recommendation does not place an obligation upon customers who purchase their systems to have them maintained by the installing company. Maintenance is a matter of agreement between the customer and the installing company or a separate maintenance company. Maintenance comes under BS EN 62676-4 Clause 17 & SC CoP Guiding Principle 10.

The preservation of security within the maintenance company is of paramount importance and steps should be taken to ensure the safe keeping of all customers’ equipment and documentation relating to a particular installation/contract.

Note: BS EN 50132-7 states that “CCTV systems should be maintained in accordance with the schedule supplied by the system designer or supplier”, but does not detail any specific maintenance requirements. These guidelines give specific advice for the maintenance of CCTV surveillance systems, and provide examples of the type of documentation required to be used by the service company.

A maintenance company should ensure that adequate vetting of all employees is carried out. All employees, who visit a customer’s premises, shall carry identification cards which should include a photograph and signature of the bearer, the company’s name, contact details and a date of expiry (maximum of 3 years).
Each service technician employed by the maintenance company should carry a range of tools, test equipment and other equipment to enable them to perform their functions satisfactorily. Specialist tools, test equipment and plant should be available for deeper investigation if necessary.
Note: Disconnections, for whatever reason, should be recorded on a maintenance record and authorised by the client or his representative.
The maintenance company’s organisation should be so staffed as to ensure that the recommendations of this Code of Practice can be met at all times. The following factors should be taken into consideration:
1.       the number of installations to be serviced
2.       the complexity of the installations;
3.       the geographical spread of the installations in relation to the location of the maintenance company, its branches and its service personnel
4.       the method of calling out service personnel outside normal office hours, where applicable.
5.       Service personnel should be adequately trained and training should be updated whenever appropriate.
Maintenance Service is 3 types but scope of work is same.
A.   Preventive Maintenance service.
B.   Corrective Maintenance service.
C.   Performance Maintenance service.

http://arindamcctvaccesscontrol.blogspot.in/2014/09/service-and-maintenance-for-cctv.html


Note: The BS EN standards BS EN 62676-2-X comprising part 1, 2 and 3, provide detailed guidelines to manufacturers as to how they should implement IP video transmission products.

An end user is unlikely to benefit by reading the 62676-2-X standards. They may instead be involved in a buying decision which could place reliance on claims of conformance to the part of the BS EN standard the manufacturer chose to implement. Interoperability of equipment is not solely reliant on the requirements included in the BS EN standards in their current form. There is no guarantee that a product which simply claims BS EN 62676 compliance will provide full compatibility with another claiming the same compliance although it should allow for a minimum level of image transfer. 

Installers, users and specifiers should treat claims of interoperability between manufacturers products with caution. The parts of the BS EN standard which focus on interoperability, are 62676-2-2, which describes the PSIA guidelines for interoperability of IP Video devices, and 62676-2-3, which describes the ONVIF guidelines for interoperability.

ONVIF and PSIA, are at their base level, a common set of commands allowing basic communication between devices but this does not guarantee that the devices will function to the full potential of their design. Issues with product firmware and software should also be considered: a change of firmware / software versions should be tested separately to ensure continued interoperability. Whilst the specifications try to take this into account, the number of products claiming to be conformant currently makes this an impossible task.

Claims by product manufacturers that PSIA or ONVIF compliance means that users do not have to check that the products work together should be treated with great caution. It is strongly recommended that all such products are tested before being deployed.